Chromatic quasisymmetric functions and noncommutative $P$-symmetric functions
HTML articles powered by AMS MathViewer
- by Byung-Hak Hwang;
- Trans. Amer. Math. Soc. 377 (2024), 2855-2896
- DOI: https://doi.org/10.1090/tran/9096
- Published electronically: February 13, 2024
- HTML | PDF | Request permission
Abstract:
For a natural unit interval order $P$, we describe proper colorings of the incomparability graph of $P$ in the language of heaps. We also introduce a combinatorial operation, called a local flip, on the heaps. This operation defines an equivalence relation on the proper colorings, and the equivalence relation refines the ascent statistic introduced by Shareshian and Wachs.
In addition, we define an analogue of noncommutative symmetric functions introduced by Fomin and Greene, with respect to $P$. We establish a duality between the chromatic quasisymmetric function of $P$ and these noncommutative symmetric functions. This duality leads us to positive expansions of the chromatic quasisymmetric functions into several symmetric function bases. In particular, we present some partial results for the $e$-positivity conjecture.
References
- Per Alexandersson, Private communication.
- Per Alexandersson and Greta Panova, LLT polynomials, chromatic quasisymmetric functions and graphs with cycles, Discrete Math. 341 (2018), no. 12, 3453â3482. MR 3862644, DOI 10.1016/j.disc.2018.09.001
- Per Alexandersson and Robin Sulzgruber, $P$-partitions and $p$-positivity, Int. Math. Res. Not. IMRN 14 (2021), 10848â10907. MR 4285737, DOI 10.1093/imrn/rnz130
- Sami H. Assaf, Dual equivalence graphs I: A new paradigm for Schur positivity, Forum Math. Sigma 3 (2015), Paper No. e12, 33. MR 3376739, DOI 10.1017/fms.2015.15
- Christos A. Athanasiadis, Power sum expansion of chromatic quasisymmetric functions, Electron. J. Combin. 22 (2015), no. 2, Paper 2.7, 9. MR 3359910, DOI 10.37236/4761
- Patrick Brosnan and Timothy Y. Chow, Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties, Adv. Math. 329 (2018), 955â1001. MR 3783432, DOI 10.1016/j.aim.2018.02.020
- Jonah Blasiak and Sergey Fomin, Noncommutative Schur functions, switchboards, and Schur positivity, Selecta Math. (N.S.) 23 (2017), no. 1, 727â766. MR 3595905, DOI 10.1007/s00029-016-0253-y
- Jonah Blasiak, Haglundâs conjecture on 3-column Macdonald polynomials, Math. Z. 283 (2016), no. 1-2, 601â628. MR 3489082, DOI 10.1007/s00209-015-1612-7
- Olivier Bernardi and Philippe Nadeau, Combinatorial reciprocity for the chromatic polynomial and the chromatic symmetric function, Discrete Math. 343 (2020), no. 10, 111989, 13. MR 4103840, DOI 10.1016/j.disc.2020.111989
- Soojin Cho and Jisun Huh, On $e$-positivity and $e$-unimodality of chromatic quasi-symmetric functions, SIAM J. Discrete Math. 33 (2019), no. 4, 2286â2315. MR 4033687, DOI 10.1137/18M1216201
- Samuel Clearman, Matthew Hyatt, Brittany Shelton, and Mark Skandera, Evaluations of Hecke algebra traces at Kazhdan-Lusztig basis elements, Electron. J. Combin. 23 (2016), no. 2, Paper 2.7, 56. MR 3512629, DOI 10.37236/5021
- Erik Carlsson and Anton Mellit, A proof of the shuffle conjecture, J. Amer. Math. Soc. 31 (2018), no. 3, 661â697. MR 3787405, DOI 10.1090/jams/893
- Sergey Fomin and Curtis Greene, Noncommutative Schur functions and their applications, Discrete Math. 193 (1998), no. 1-3, 179â200. Selected papers in honor of Adriano Garsia (Taormina, 1994). MR 1661368, DOI 10.1016/S0012-365X(98)00140-X
- Vesselin Gasharov, Incomparability graphs of $(3+1)$-free posets are $s$-positive, Proceedings of the 6th Conference on Formal Power Series and Algebraic Combinatorics (New Brunswick, NJ, 1994), 1996, pp. 193â197 (English, with English and French summaries). MR 1417294, DOI 10.1016/S0012-365X(96)83014-7
- Israel M. Gelfand, Daniel Krob, Alain Lascoux, Bernard Leclerc, Vladimir S. Retakh, and Jean-Yves Thibon, Noncommutative symmetric functions, Adv. Math. 112 (1995), no. 2, 218â348. MR 1327096, DOI 10.1006/aima.1995.1032
- Mathieu Guay-Paquet, A modular relation for the chromatic symmetric functions of (3+1)-free posets, Preprint, arXiv:1306.2400, 2013.
- Mathieu Guay-Paquet, A second proof of the ShareshianâWachs conjecture, by way of a new Hopf algebra, Preprint, arXiv:1601.05498, 2016.
- Mark Haiman, Hecke algebra characters and immanant conjectures, J. Amer. Math. Soc. 6 (1993), no. 3, 569â595. MR 1186961, DOI 10.1090/S0894-0347-1993-1186961-9
- JiSun Huh, Sun-Young Nam, and Meesue Yoo, Melting lollipop chromatic quasisymmetric functions and Schur expansion of unicellular LLT polynomials, Discrete Math. 343 (2020), no. 3, 111728, 21. MR 4033624, DOI 10.1016/j.disc.2019.111728
- Megumi Harada and Martha E. Precup, The cohomology of abelian Hessenberg varieties and the Stanley-Stembridge conjecture, Algebr. Comb. 2 (2019), no. 6, 1059â1108. Revised edition of [ MR3940624]. MR 4049838, DOI 10.5802/alco.76
- Dongkwan Kim and Pavlo Pylyavskyy, Robinson-Schensted correspondence for unit interval orders, Selecta Math. (N.S.) 27 (2021), no. 5, Paper No. 97, 66. MR 4323326, DOI 10.1007/s00029-021-00708-4
- Thomas Lam, Ribbon Schur operators, European J. Combin. 29 (2008), no. 1, 343â359. MR 2368641, DOI 10.1016/j.ejc.2006.01.016
- Alain Lascoux and Marcel-P. SchĂŒtzenberger, Le monoĂŻde plaxique, Noncommutative structures in algebra and geometric combinatorics (Naples, 1978) Quad. âRicerca Sci.â, vol. 109, CNR, Rome, 1981, pp. 129â156 (French, with Italian summary). MR 646486
- Dana Scott and Patrick Suppes, Foundational aspects of theories of measurement, J. Symbolic Logic 23 (1958), 113â128. MR 115919, DOI 10.2307/2964389
- Richard P. Stanley and John R. Stembridge, On immanants of Jacobi-Trudi matrices and permutations with restricted position, J. Combin. Theory Ser. A 62 (1993), no. 2, 261â279. MR 1207737, DOI 10.1016/0097-3165(93)90048-D
- Richard P. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Adv. Math. 111 (1995), no. 1, 166â194. MR 1317387, DOI 10.1006/aima.1995.1020
- Richard P. Stanley, Graph colorings and related symmetric functions: ideas and applications: a description of results, interesting applications, & notable open problems, Discrete Math. 193 (1998), no. 1-3, 267â286. Selected papers in honor of Adriano Garsia (Taormina, 1994). MR 1661374, DOI 10.1016/S0012-365X(98)00146-0
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282, DOI 10.1017/CBO9780511609589
- John Shareshian and Michelle L. Wachs, Chromatic quasisymmetric functions, Adv. Math. 295 (2016), 497â551. MR 3488041, DOI 10.1016/j.aim.2015.12.018
- Julianna S. Tymoczko, Permutation actions on equivariant cohomology of flag varieties, Toric topology, Contemp. Math., vol. 460, Amer. Math. Soc., Providence, RI, 2008, pp. 365â384. MR 2428368, DOI 10.1090/conm/460/09030
- Julianna S. Tymoczko, Permutation representations on Schubert varieties, Amer. J. Math. 130 (2008), no. 5, 1171â1194. MR 2450205, DOI 10.1353/ajm.0.0018
- GĂ©rard Xavier Viennot, Heaps of pieces. I. Basic definitions and combinatorial lemmas, Combinatoire Ă©numĂ©rative (Montreal, Que., 1985/Quebec, Que., 1985) Lecture Notes in Math., vol. 1234, Springer, Berlin, 1986, pp. 321â350. MR 927773, DOI 10.1007/BFb0072524
Bibliographic Information
- Byung-Hak Hwang
- Affiliation: Anyang, South Korea
- MR Author ID: 1319930
- ORCID: 0000-0002-1802-9560
- Email: byunghakhwang@gmail.com
- Received by editor(s): December 24, 2022
- Received by editor(s) in revised form: October 30, 2023
- Published electronically: February 13, 2024
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 2855-2896
- MSC (2020): Primary 05E05
- DOI: https://doi.org/10.1090/tran/9096
- MathSciNet review: 4744771