Coideal subalgebras of pointed and connected Hopf algebras
HTML articles powered by AMS MathViewer
- by G.-S. Zhou;
- Trans. Amer. Math. Soc. 377 (2024), 2663-2709
- DOI: https://doi.org/10.1090/tran/9097
- Published electronically: January 10, 2024
- HTML | PDF | Request permission
Abstract:
Let $H$ be a pointed Hopf algebra with abelian coradical. Let $A\supseteq B$ be left (or right) coideal subalgebras of $H$ that contain the coradical of $H$. We show that $A$ has a PBW basis over $B$, provided that $H$ satisfies certain mild conditions. In the case that $H$ is a connected graded Hopf algebra of characteristic zero and $A$ and $B$ are both homogeneous of finite Gelfand-Kirillov dimension, we show that $A$ is a graded iterated Ore extension of $B$. These results turn out to be conceptual consequences of a structure theorem for each pair $S\supseteq T$ of homogeneous coideal subalgebras of a connected graded braided bialgebra $R$ with braiding satisfying certain mild conditions. The structure theorem claims the existence of a well-behaved PBW basis of $S$ over $T$. The approach to the structure theorem is constructive by means of a combinatorial method based on Lyndon words and braided commutators, which is originally developed by V. K. Kharchenko [Algebra Log. 38 (1999), pp. 476–507, 509] for primitively generated braided Hopf algebras of diagonal type. Since in our context we don’t priorilly assume $R$ to be primitively generated, new methods and ideas are introduced to handle the corresponding difficulties, among others.References
- Frank W. Anderson and Kent R. Fuller, Rings and categories of modules, 2nd ed., Graduate Texts in Mathematics, vol. 13, Springer-Verlag, New York, 1992. MR 1245487, DOI 10.1007/978-1-4612-4418-9
- N. Andruskiewitsch and H.-J. Schneider, Lifting of quantum linear spaces and pointed Hopf algebras of order $p^3$, J. Algebra 209 (1998), no. 2, 658–691. MR 1659895, DOI 10.1006/jabr.1998.7643
- M. Artin, J. Tate, and M. Van den Bergh, Modules over regular algebras of dimension $3$, Invent. Math. 106 (1991), no. 2, 335–388. MR 1128218, DOI 10.1007/BF01243916
- Arkady Berenstein and Jacob Greenstein, Primitively generated Hall algebras, Pacific J. Math. 281 (2016), no. 2, 287–331. MR 3463039, DOI 10.2140/pjm.2016.281.287
- Ken Brown and Paul Gilmartin, Quantum homogeneous spaces of connected Hopf algebras, J. Algebra 454 (2016), 400–432. MR 3473433, DOI 10.1016/j.jalgebra.2016.01.030
- K. A. Brown, P. Gilmartin, and J. J. Zhang, Connected (graded) Hopf algebras, Trans. Amer. Math. Soc. 372 (2019), no. 5, 3283–3317. MR 3988611, DOI 10.1090/tran/7686
- K. A. Brown, S. O’Hagan, J. J. Zhang, and G. Zhuang, Connected Hopf algebras and iterated Ore extensions, J. Pure Appl. Algebra 219 (2015), no. 6, 2405–2433. MR 3299738, DOI 10.1016/j.jpaa.2014.09.007
- K. A. Brown and J. J. Zhang, Dualising complexes and twisted Hochschild (co)homology for Noetherian Hopf algebras, J. Algebra 320 (2008), no. 5, 1814–1850. MR 2437632, DOI 10.1016/j.jalgebra.2007.03.050
- Kenneth A. Brown and James J. Zhang, Iterated Hopf Ore extensions in positive characteristic, J. Noncommut. Geom. 16 (2022), no. 3, 787–837. MR 4506529, DOI 10.4171/jncg/453
- Sergio Chouhy and Andrea Solotar, Projective resolutions of associative algebras and ambiguities, J. Algebra 432 (2015), 22–61. MR 3334140, DOI 10.1016/j.jalgebra.2015.02.019
- Michel Demazure and Pierre Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeurs, Paris; North-Holland Publishing Co., Amsterdam, 1970 (French). Avec un appendice Corps de classes local par Michiel Hazewinkel. MR 302656
- Karin Erdmann, Øyvind Solberg, and Xingting Wang, On the structure and cohomology ring of connected Hopf algebras, J. Algebra 527 (2019), 366–398. MR 3924439, DOI 10.1016/j.jalgebra.2019.02.030
- V. O. Ferreira, L. S. I. Murakami, and A. Paques, A Hopf-Galois correspondence for free algebras, J. Algebra 276 (2004), no. 1, 407–416. MR 2054404, DOI 10.1016/S0021-8693(03)00502-7
- Tatiana Gateva-Ivanova, Global dimension of associative algebras, Applied algebra, algebraic algorithms and error-correcting codes (Rome, 1988) Lecture Notes in Comput. Sci., vol. 357, Springer, Berlin, 1989, pp. 213–229. MR 1008505, DOI 10.1007/3-540-51083-4_{6}1
- Tatiana Gateva-Ivanova, Algebras defined by Lyndon words and Artin-Schelter regularity, Trans. Amer. Math. Soc. Ser. B 9 (2022), 648–699. MR 4446800, DOI 10.1090/btran/89
- Tatiana Gateva-Ivanova and Gunnar Fløystad, Monomial algebras defined by Lyndon words, J. Algebra 403 (2014), 470–496. MR 3166086, DOI 10.1016/j.jalgebra.2014.01.012
- István Heckenberger and Hans-Jürgen Schneider, Right coideal subalgebras of Nichols algebras and the Duflo order on the Weyl groupoid, Israel J. Math. 197 (2013), no. 1, 139–187. MR 3096611, DOI 10.1007/s11856-012-0180-3
- István Heckenberger and Hans-Jürgen Schneider, Hopf algebras and root systems, Mathematical Surveys and Monographs, vol. 247, American Mathematical Society, Providence, RI, [2020] ©2020. MR 4164719, DOI 10.1090/surv/247
- V. K. Kharchenko, A quantum analogue of the Poincaré-Birkhoff-Witt theorem, Algebra Log. 38 (1999), no. 4, 476–507, 509 (Russian, with Russian summary); English transl., Algebra and Logic 38 (1999), no. 4, 259–276. MR 1763385, DOI 10.1007/BF02671731
- V. K. Kharchenko, PBW-bases of coideal subalgebras and a freeness theorem, Trans. Amer. Math. Soc. 360 (2008), no. 10, 5121–5143. MR 2415067, DOI 10.1090/S0002-9947-08-04483-8
- V. K. Kharchenko, Right coideal subalgebras of $U^+_q({\mathfrak {so}}_{2n+1})$, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 6, 1677–1735. MR 2835327
- V. K. Kharchenko and A. V. Lara Sagahon, Right coideal subalgebras in $U_q(\mathfrak {sl}_{n+1})$, J. Algebra 319 (2008), no. 6, 2571–2625. MR 2388323, DOI 10.1016/j.jalgebra.2007.11.022
- Ulrich Krähmer, On the Hochschild (co)homology of quantum homogeneous spaces, Israel J. Math. 189 (2012), 237–266. MR 2931396, DOI 10.1007/s11856-011-0168-4
- Günter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Revised edition, Graduate Studies in Mathematics, vol. 22, American Mathematical Society, Providence, RI, 2000. MR 1721834, DOI 10.1090/gsm/022
- Bernard Leclerc, Dual canonical bases, quantum shuffles and $q$-characters, Math. Z. 246 (2004), no. 4, 691–732. MR 2045836, DOI 10.1007/s00209-003-0609-9
- Gail Letzter, Symmetric pairs for quantized enveloping algebras, J. Algebra 220 (1999), no. 2, 729–767. MR 1717368, DOI 10.1006/jabr.1999.8015
- Gail Letzter, Coideal subalgebras and quantum symmetric pairs, New directions in Hopf algebras, Math. Sci. Res. Inst. Publ., vol. 43, Cambridge Univ. Press, Cambridge, 2002, pp. 117–165. MR 1913438
- C.-C. Li and G.-S. Zhou, The structure of connected (graded) Hopf algebras revisited, J. Algebra 610 (2022), 684–702. MR 4469128, DOI 10.1016/j.jalgebra.2022.07.031
- L.-Y. Liu and Q.-S. Wu, Rigid dualizing complexes over quantum homogeneous spaces, J. Algebra 353 (2012), 121–141. MR 2872439, DOI 10.1016/j.jalgebra.2011.12.007
- M. Lothaire, Combinatorics on words, Encyclopedia of Mathematics and its Applications, vol. 17, Addison-Wesley Publishing Co., Reading, MA, 1983. A collective work by Dominique Perrin, Jean Berstel, Christian Choffrut, Robert Cori, Dominique Foata, Jean Eric Pin, Guiseppe Pirillo, Christophe Reutenauer, Marcel-P. Schützenberger, Jacques Sakarovitch and Imre Simon; With a foreword by Roger Lyndon; Edited and with a preface by Perrin. MR 675953
- George Lusztig, Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra, J. Amer. Math. Soc. 3 (1990), no. 1, 257–296. MR 1013053, DOI 10.1090/S0894-0347-1990-1013053-9
- Akira Masuoka, On Hopf algebras with cocommutative coradicals, J. Algebra 144 (1991), no. 2, 451–466. MR 1140616, DOI 10.1016/0021-8693(91)90116-P
- John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211–264. MR 174052, DOI 10.2307/1970615
- E. F. Müller and H.-J. Schneider, Quantum homogeneous spaces with faithfully flat module structures, Israel J. Math. 111 (1999), 157–190. MR 1710737, DOI 10.1007/BF02810683
- Van C. Nguyen, Linhong Wang, and Xingting Wang, Primitive deformations of quantum $p$-groups, Algebr. Represent. Theory 22 (2019), no. 4, 837–865. MR 3985142, DOI 10.1007/s10468-018-9800-x
- P. Nordbeck, Cononical bases for algebraic computations, Ph.D. Thesis, Lund University, 2001.
- Bárbara Pogorelsky, Right coideal subalgebras of the quantum Borel algebra of type $G_2$, J. Algebra 322 (2009), no. 7, 2335–2354. MR 2553203, DOI 10.1016/j.jalgebra.2009.06.019
- David E. Radford, The structure of Hopf algebras with a projection, J. Algebra 92 (1985), no. 2, 322–347. MR 778452, DOI 10.1016/0021-8693(85)90124-3
- Manuel Reyes, Daniel Rogalski, and James J. Zhang, Skew Calabi-Yau algebras and homological identities, Adv. Math. 264 (2014), 308–354. MR 3250287, DOI 10.1016/j.aim.2014.07.010
- Claus Michael Ringel, PBW-bases of quantum groups, J. Reine Angew. Math. 470 (1996), 51–88. MR 1370206, DOI 10.1515/crll.1996.470.51
- Serge Skryabin, Projectivity and freeness over comodule algebras, Trans. Amer. Math. Soc. 359 (2007), no. 6, 2597–2623. MR 2286047, DOI 10.1090/S0002-9947-07-03979-7
- Mitsuhiro Takeuchi, Survey of braided Hopf algebras, New trends in Hopf algebra theory (La Falda, 1999) Contemp. Math., vol. 267, Amer. Math. Soc., Providence, RI, 2000, pp. 301–323. MR 1800719, DOI 10.1090/conm/267/04277
- Mitsuhiro Takeuchi, Relative Hopf modules—equivalences and freeness criteria, J. Algebra 60 (1979), no. 2, 452–471. MR 549940, DOI 10.1016/0021-8693(79)90093-0
- Stefan Ufer, PBW bases for a class of braided Hopf algebras, J. Algebra 280 (2004), no. 1, 84–119. MR 2081922, DOI 10.1016/j.jalgebra.2004.06.017
- D.-G. Wang, J. J. Zhang, and G. Zhuang, Connected Hopf algebras of Gelfand-Kirillov dimension four, Trans. Amer. Math. Soc. 367 (2015), no. 8, 5597–5632. MR 3347184, DOI 10.1090/S0002-9947-2015-06219-9
- W. Wang, Quamtum symmetric pairs, to appear in Proceedings of ICM 2022, arXiv:2112.10911.
- Tadashi Yanai, Galois correspondence theorem for Hopf algebra actions, Algebraic structures and their representations, Contemp. Math., vol. 376, Amer. Math. Soc., Providence, RI, 2005, pp. 393–411. MR 2147038, DOI 10.1090/conm/376/06974
- Gui Song Zhou, An application of Lyndon words in associative algebras, Appl. Math. J. Chinese Univ. Ser. A 30 (2015), no. 2, 245–252 (Chinese, with English and Chinese summaries). MR 3362755
- G.-S. Zhou and D.-M. Lu, Artin-Schelter regular algebras of dimension five with two generators, J. Pure Appl. Algebra 218 (2014), no. 5, 937–961. MR 3149644, DOI 10.1016/j.jpaa.2013.10.011
- G.-S. Zhou, Y. Shen, and D.-M. Lu, The structure of connected (graded) Hopf algebras, Adv. Math. 372 (2020), 107292, 31. MR 4125517, DOI 10.1016/j.aim.2020.107292
- Guangbin Zhuang, Properties of pointed and connected Hopf algebras of finite Gelfand-Kirillov dimension, J. Lond. Math. Soc. (2) 87 (2013), no. 3, 877–898. MR 3073681, DOI 10.1112/jlms/jds079
Bibliographic Information
- G.-S. Zhou
- Affiliation: School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China; and Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, China
- Email: zhouguisong@nbu.edu.cn
- Received by editor(s): January 8, 2023
- Received by editor(s) in revised form: October 5, 2023
- Published electronically: January 10, 2024
- Additional Notes: This work was supported by Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice (Grant Nos. 22DZ2229014), the NSFC (Grant Nos. 12371039 & 11971141), the Fundamental Research Funds for the Provincial Universities of Zhejiang, and the K.C. Wong Magna Fund in Ningbo University.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 2663-2709
- MSC (2020): Primary 16Txx, 68R15, 16P90, 16W50, 16S15
- DOI: https://doi.org/10.1090/tran/9097
- MathSciNet review: 4744768