Rees algebras of sparse determinantal ideals
HTML articles powered by AMS MathViewer
- by Ela Celikbas, Emilie Dufresne, Louiza Fouli, Elisa Gorla, Kuei-Nuan Lin, Claudia Polini and Irena Swanson;
- Trans. Amer. Math. Soc. 377 (2024), 2317-2333
- DOI: https://doi.org/10.1090/tran/9101
- Published electronically: February 14, 2024
- HTML | PDF | Request permission
Abstract:
We determine the defining equations of the Rees algebra and of the special fiber ring of the ideal of maximal minors of a $2\times n$ sparse matrix. We prove that their initial algebras are ladder determinantal rings. This allows us to show that the Rees algebra and the special fiber ring are Cohen-Macaulay domains, they are Koszul, they have rational singularities in characteristic zero and are F-rational in positive characteristic.References
- A. Almousa, K.-N. Lin, and W. Liske, Rees algebras of unit interval determinantal facet ideals, Journal of Pure and Applied Algebra, Volume 228, Issue 5, 2024, 107601, ISSN 0022-4049, DOI 10.1016/j.jpaa.2023.107601.
- Adam Boocher, Free resolutions and sparse determinantal ideals, Math. Res. Lett. 19 (2012), no. 4, 805–821. MR 3008416, DOI 10.4310/MRL.2012.v19.n4.a6
- Stefan Blum, Subalgebras of bigraded Koszul algebras, J. Algebra 242 (2001), no. 2, 795–809. MR 1848973, DOI 10.1006/jabr.2001.8804
- Winfried Bruns, Aldo Conca, and Matteo Varbaro, Maximal minors and linear powers, J. Reine Angew. Math. 702 (2015), 41–53. MR 3341465, DOI 10.1515/crelle-2013-0026
- Winfried Bruns, Aron Simis, and Ngô Việt Trung, Blow-up of straightening-closed ideals in ordinal Hodge algebras, Trans. Amer. Math. Soc. 326 (1991), no. 2, 507–528. MR 1005076, DOI 10.1090/S0002-9947-1991-1005076-8
- Winfried Bruns and Udo Vetter, Determinantal rings, Lecture Notes in Mathematics, vol. 1327, Springer-Verlag, Berlin, 1988. MR 953963, DOI 10.1007/BFb0080378
- Laurent Busé, On the equations of the moving curve ideal of a rational algebraic plane curve, J. Algebra 321 (2009), no. 8, 2317–2344. MR 2501523, DOI 10.1016/j.jalgebra.2009.01.030
- Laurent Busé and Jean-Pierre Jouanolou, On the closed image of a rational map and the implicitization problem, J. Algebra 265 (2003), no. 1, 312–357. MR 1984914, DOI 10.1016/S0021-8693(03)00181-9
- Falai Chen, Wenping Wang, and Yang Liu, Computing singular points of plane rational curves, J. Symbolic Comput. 43 (2008), no. 2, 92–117. MR 2357078, DOI 10.1016/j.jsc.2007.10.003
- Aldo Conca, Ladder determinantal rings, J. Pure Appl. Algebra 98 (1995), no. 2, 119–134. MR 1319965, DOI 10.1016/0022-4049(94)00039-L
- Aldo Conca, Gröbner bases of powers of ideals of maximal minors, J. Pure Appl. Algebra 121 (1997), no. 3, 223–231. MR 1477608, DOI 10.1016/S0022-4049(96)00061-8
- Aldo Conca, Jürgen Herzog, and Giuseppe Valla, Sagbi bases with applications to blow-up algebras, J. Reine Angew. Math. 474 (1996), 113–138. MR 1390693, DOI 10.1515/crll.1996.474.113
- Alberto Corso and Uwe Nagel, Monomial and toric ideals associated to Ferrers graphs, Trans. Amer. Math. Soc. 361 (2009), no. 3, 1371–1395. MR 2457403, DOI 10.1090/S0002-9947-08-04636-9
- David A. Cox, The moving curve ideal and the Rees algebra, Theoret. Comput. Sci. 392 (2008), no. 1-3, 23–36. MR 2394983, DOI 10.1016/j.tcs.2007.10.012
- David A. Cox, Kuei-Nuan Lin, and Gabriel Sosa, Multi-Rees algebras and toric dynamical systems, Proc. Amer. Math. Soc. 147 (2019), no. 11, 4605–4616. MR 4011498, DOI 10.1090/proc/14579
- Corrado De Concini, David Eisenbud, and Claudio Procesi, Hodge algebras, Astérisque, vol. 91, Société Mathématique de France, Paris, 1982. With a French summary. MR 680936
- Emanuela De Negri and Elisa Gorla, Invariants of ideals generated by Pfaffians, Commutative algebra and its connections to geometry, Contemp. Math., vol. 555, Amer. Math. Soc., Providence, RI, 2011, pp. 47–62. MR 2882673, DOI 10.1090/conm/555/10988
- David Eisenbud, Introduction to algebras with straightening laws, Ring theory and algebra, III (Proc. Third Conf., Univ. Oklahoma, Norman, Okla., 1979) Lect. Notes Pure Appl. Math., vol. 55, Dekker, New York, 1980, pp. 243–268. MR 584614
- David Eisenbud and Craig Huneke, Cohen-Macaulay Rees algebras and their specialization, J. Algebra 81 (1983), no. 1, 202–224. MR 696134, DOI 10.1016/0021-8693(83)90216-8
- Viviana Ene and Jürgen Herzog, Gröbner bases in commutative algebra, Graduate Studies in Mathematics, vol. 130, American Mathematical Society, Providence, RI, 2012. MR 2850142, DOI 10.1090/gsm/130
- R. Fröberg, Koszul algebras, Advances in commutative ring theory (Fez, 1997) Lecture Notes in Pure and Appl. Math., vol. 205, Dekker, New York, 1999, pp. 337–350. MR 1767430
- Sudhir R. Ghorpade and Christian Krattenthaler, Computation of the $a$-invariant of ladder determinantal rings, J. Algebra Appl. 14 (2015), no. 9, 1540014, 24. MR 3368266, DOI 10.1142/S0219498815400149
- M. Giusti and M. Merle, Singularités isolées et sections planes de variétés déterminantielles. II. Sections de variétés déterminantielles par les plans de coordonnées, Algebraic geometry (La Rábida, 1981) Lecture Notes in Math., vol. 961, Springer, Berlin, 1982, pp. 103–118 (French). MR 708329, DOI 10.1007/BFb0071278
- Elisa Gorla, Mixed ladder determinantal varieties from two-sided ladders, J. Pure Appl. Algebra 211 (2007), no. 2, 433–444. MR 2340461, DOI 10.1016/j.jpaa.2007.01.016
- E. Gorla, J. C. Migliore, and U. Nagel, Gröbner bases via linkage, J. Algebra 384 (2013), 110–134. MR 3045153, DOI 10.1016/j.jalgebra.2013.02.017
- Jürgen Herzog, Takayuki Hibi, and Marius Vladoiu, Ideals of fiber type and polymatroids, Osaka J. Math. 42 (2005), no. 4, 807–829. MR 2195995
- Jürgen Herzog and Takayuki Hibi, Distributive lattices, bipartite graphs and Alexander duality, J. Algebraic Combin. 22 (2005), no. 3, 289–302. MR 2181367, DOI 10.1007/s10801-005-4528-1
- M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318–337. MR 304376, DOI 10.2307/1970791
- Masako Kokubo and Takayuki Hibi, Weakly polymatroidal ideals, Algebra Colloq. 13 (2006), no. 4, 711–720. MR 2260118, DOI 10.1142/S1005386706000666
- Deepak Kapur and Klaus Madlener, A completion procedure for computing a canonical basis for a $k$-subalgebra, Computers and mathematics (Cambridge, MA, 1989) Springer, New York, 1989, pp. 1–11. MR 1005954
- Kuei-Nuan Lin and Yi-Huang Shen, Koszul blowup algebras associated to three-dimensional Ferrers diagrams, J. Algebra 514 (2018), 219–253. MR 3853064, DOI 10.1016/j.jalgebra.2018.08.013
- Kuei-Nuan Lin and Yi-Huang Shen, Blow-up algebras of secant varieties of rational normal scrolls, Collect. Math. 74 (2023), no. 1, 247–278. MR 4528956, DOI 10.1007/s13348-021-00345-2
- Himanee Narasimhan, The irreducibility of ladder determinantal varieties, J. Algebra 102 (1986), no. 1, 162–185. MR 853237, DOI 10.1016/0021-8693(86)90134-1
- D. Rees, Two classical theorems of ideal theory, Proc. Cambridge Philos. Soc. 52 (1956), 155–157. MR 74386, DOI 10.1017/s0305004100031091
- Lorenzo Robbiano and Moss Sweedler, Subalgebra bases, Commutative algebra (Salvador, 1988) Lecture Notes in Math., vol. 1430, Springer, Berlin, 1990, pp. 61–87. MR 1068324, DOI 10.1007/BFb0085537
- Aron Simis, Wolmer V. Vasconcelos, and Rafael H. Villarreal, On the ideal theory of graphs, J. Algebra 167 (1994), no. 2, 389–416. MR 1283294, DOI 10.1006/jabr.1994.1192
- Ning Song, Falai Chen, and Ron Goldman, Axial moving lines and singularities of rational planar curves, Comput. Aided Geom. Design 24 (2007), no. 4, 200–209. MR 2320434, DOI 10.1016/j.cagd.2007.02.002
- B. Sturmfels, Toric ideals, Preliminary Lecture Notes, Workshop on Commutative Algebra and its relation to Combinatorics and Computer Algebra, ICPT Trieste, http://indico.ictp.it/event/a02275/contribution/1, 1994.
- Bernd Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996. MR 1363949, DOI 10.1090/ulect/008
- Ngô Viêt Trung, On the symbolic powers of determinantal ideals, J. Algebra 58 (1979), no. 2, 361–369. MR 540645, DOI 10.1016/0021-8693(79)90167-4
- Rafael H. Villarreal, Rees algebras of edge ideals, Comm. Algebra 23 (1995), no. 9, 3513–3524. MR 1335312, DOI 10.1080/00927879508825412
- Hsin-Ju Wang, A determinantal formula for the Hilbert series of determinantal rings of one-sided ladder, J. Algebra 265 (2003), no. 1, 79–99. MR 1984900, DOI 10.1016/S0021-8693(03)00223-0
- H.-J. Wang, Counting of paths and the multiplicity of determinantal rings, arXiv:0210375 [math.AC].
Bibliographic Information
- Ela Celikbas
- Affiliation: School of Mathematical and Data Sciences, West Virginia University, Morgantown, West Virginia 26506
- MR Author ID: 972254
- ORCID: 0000-0002-7304-9089
- Email: ela.celikbas@math.wvu.edu
- Emilie Dufresne
- Affiliation: Department of Mathematics, University of York, York, United Kingdom
- MR Author ID: 873000
- ORCID: 0000-0001-9290-7037
- Email: emilie.dufresne@york.ac.uk
- Louiza Fouli
- Affiliation: Department of Mathematical Sciences, New Mexico State University, Las Cruces, New Mexico 88003
- MR Author ID: 835733
- ORCID: 0000-0002-6556-1648
- Email: lfouli@nmsu.edu
- Elisa Gorla
- Affiliation: Institut de Mathématiques, Université de Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
- MR Author ID: 727408
- ORCID: 0000-0002-6418-4887
- Email: elisa.gorla@unine.ch
- Kuei-Nuan Lin
- Affiliation: Department of Mathematics, Penn State University, Greater Allegheny campus, McKeesport, Pennsylvania 15132
- MR Author ID: 1046702
- ORCID: 0000-0002-3320-6246
- Email: kul20@psu.edu
- Claudia Polini
- Affiliation: Department of Mathematics, University of Notre Dame, 255 Hurley, Notre Dame, Indiana 46556
- MR Author ID: 340709
- ORCID: 0000-0003-1576-6765
- Email: cpolini@nd.edu
- Irena Swanson
- Affiliation: Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, Indiana 47907
- MR Author ID: 320892
- ORCID: 0000-0002-9790-625X
- Email: irena@purdue.edu
- Received by editor(s): September 9, 2022
- Published electronically: February 14, 2024
- Additional Notes: The sixth author was partially supported by NSF grant DMS-1902033
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 2317-2333
- MSC (2020): Primary 13A30, 13C40; Secondary 14M12, 13P10, 05E40, 13F50
- DOI: https://doi.org/10.1090/tran/9101
- MathSciNet review: 4744759