On concentrated traveling vortex pairs with prescribed impulse
HTML articles powered by AMS MathViewer
- by Guodong Wang;
- Trans. Amer. Math. Soc. 377 (2024), 2635-2661
- DOI: https://doi.org/10.1090/tran/9105
- Published electronically: February 8, 2024
- HTML | PDF | Request permission
Abstract:
In this paper, we consider a constrained maximization problem related to planar vortex pairs with prescribed impulse. We prove existence, stability and asymptotic behavior for the maximizers, hence obtain a family of stable traveling vortex pairs approaching a pair of point vortices with equal magnitude and opposite signs. As a corollary, we get fine asymptotic estimates for Burton’s vortex pairs with large impulse. We also consider a special non-concentrated case and prove a form of stability for the Chaplygin-Lamb dipole.References
- Ken Abe and Kyudong Choi, Stability of Lamb dipoles, Arch. Ration. Mech. Anal. 244 (2022), no. 3, 877–917. MR 4419609, DOI 10.1007/s00205-022-01782-4
- Almut Burchard and Yan Guo, Compactness via symmetrization, J. Funct. Anal. 214 (2004), no. 1, 40–73. MR 2079885, DOI 10.1016/j.jfa.2004.04.005
- G. R. Burton, Steady symmetric vortex pairs and rearrangements, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), no. 3-4, 269–290. MR 943803, DOI 10.1017/S0308210500014669
- G. R. Burton, Isoperimetric properties of Lamb’s circular vortex-pair, J. Math. Fluid Mech. 7 (2005), no. suppl. 1, S68–S80. MR 2126130, DOI 10.1007/s00021-004-0126-6
- Geoffrey R. Burton, Helena J. Nussenzveig Lopes, and Milton C. Lopes Filho, Nonlinear stability for steady vortex pairs, Comm. Math. Phys. 324 (2013), no. 2, 445–463. MR 3117517, DOI 10.1007/s00220-013-1806-y
- G. R. Burton, Compactness and stability for planar vortex-pairs with prescribed impulse, J. Differential Equations 270 (2021), 547–572. MR 4150383, DOI 10.1016/j.jde.2020.08.009
- Daomin Cao, Shanfa Lai, and Weicheng Zhan, Traveling vortex pairs for 2D incompressible Euler equations, Calc. Var. Partial Differential Equations 60 (2021), no. 5, Paper No. 190, 16. MR 4295232, DOI 10.1007/s00526-021-02068-5
- S. A. Chaplygin, One case of vortex motion in fluid, Tr. Otd. Fiz. Nauk Imper. Mosk. Obshch. Lyub. Estest. 11 (1903), 11–14.
- R. J. Douglas, Rearrangements of functions on unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), no. 4, 621–644. MR 1298584, DOI 10.1017/S0308210500028572
- J. Duc and J. Sommeria, Experimental characterization of steady two dimensional vortex couples, J.Fluid Mech., 192(1988), 175–192.
- Taoufik Hmidi and Joan Mateu, Existence of corotating and counter-rotating vortex pairs for active scalar equations, Comm. Math. Phys. 350 (2017), no. 2, 699–747. MR 3607460, DOI 10.1007/s00220-016-2784-7
- Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Revised edition, Textbooks in Mathematics, CRC Press, Boca Raton, FL, 2015. MR 3409135, DOI 10.1201/b18333
- Horace Lamb, Hydrodynamics, 6th ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993. With a foreword by R. A. Caflisch [Russel E. Caflisch]. MR 1317348
- Elliott H. Lieb and Michael Loss, Analysis, 2nd ed., Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001. MR 1817225, DOI 10.1090/gsm/014
- Andrew J. Majda and Andrea L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge, 2002. MR 1867882
- Carlo Marchioro and Mario Pulvirenti, Vortices and localization in Euler flows, Comm. Math. Phys. 154 (1993), no. 1, 49–61. MR 1220946, DOI 10.1007/BF02096831
- Carlo Marchioro and Mario Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Applied Mathematical Sciences, vol. 96, Springer-Verlag, New York, 1994. MR 1245492, DOI 10.1007/978-1-4612-4284-0
- J. Norbury, Steady planar vortex pairs in an ideal fluid, Comm. Pure Appl. Math. 28 (1975), no. 6, 679–700. MR 399645, DOI 10.1002/cpa.3160280602
- Edward A. Overman and Norman J. Zabusky, Coaxial scattering of Euler-equation translating $V$-states via contour dynamics, J. Fluid Mech. 125 (1982), 187–202. MR 688750, DOI 10.1017/S0022112082003309
- D. I. Pullin, Contour dynamics methods, Annual review of fluid mechanics, Vol. 24, Annual Reviews, Palo Alto, CA, 1992, pp. 89–115. MR 1145007
- Didier Smets and Jean Van Schaftingen, Desingularization of vortices for the Euler equation, Arch. Ration. Mech. Anal. 198 (2010), no. 3, 869–925. MR 2729322, DOI 10.1007/s00205-010-0293-y
- Bruce Turkington, On steady vortex flow in two dimensions. I, II, Comm. Partial Differential Equations 8 (1983), no. 9, 999–1030, 1031–1071. MR 702729, DOI 10.1080/03605308308820293
- Guodong Wang, Asymptotic estimates for concentrated vortex pairs, arXiv:2203.11800.
- Jian Fu Yang, On the existence of steady planar vortices, Ann. Univ. Ferrara Sez. VII (N.S.) 37 (1991), 111–129 (1992). MR 1206997, DOI 10.1007/BF02825279
- Joseph Yang and Toshi Kubota, The steady motion of a symmetric, finite core size, counterrotating vortex pair, SIAM J. Appl. Math. 54 (1994), no. 1, 14–25. MR 1260906, DOI 10.1137/S0036139992240917
- V. I. Yudovich, Non-stationary flow of an ideal incompressible fluid, USSR Comp. Math. $\&$ Math.Phys, 3(1963), 1407–1456 [English].
Bibliographic Information
- Guodong Wang
- Affiliation: School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, People’s Republic of China
- Email: guodongwang0102@gmail.com
- Received by editor(s): July 4, 2022
- Received by editor(s) in revised form: July 16, 2023
- Published electronically: February 8, 2024
- Additional Notes: The author was supported by National Natural Science Foundation of China (12001135) and China Postdoctoral Science Foundation (2019M661261, 2021T140163).
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 2635-2661
- MSC (2020): Primary 35Q35, 76B47, 76E30
- DOI: https://doi.org/10.1090/tran/9105
- MathSciNet review: 4744767