Synchronizing dynamical systems: Their groupoids and $C^*$-algebras
HTML articles powered by AMS MathViewer
- by Robin J. Deeley and Andrew M. Stocker;
- Trans. Amer. Math. Soc. 377 (2024), 3055-3093
- DOI: https://doi.org/10.1090/tran/8969
- Published electronically: March 20, 2024
- HTML | PDF | Request permission
Abstract:
Building on work of Ruelle and Putnam in the Smale space case, Thomsen defined the homoclinic and heteroclinic $C^\ast$-algebras for an expansive dynamical system. In this paper we define a class of expansive dynamical systems, called synchronizing dynamical systems, that exhibit hyperbolic behavior almost everywhere. Synchronizing dynamical systems generalize Smale spaces (and even finitely presented systems). Yet they still have desirable dynamical properties such as having a dense set of periodic points. We study various $C^\ast$-algebras associated with a synchronizing dynamical system. Among other results, we show that the homoclinic algebra of a synchronizing system contains an ideal which behaves like the homoclinic algebra of a Smale space.References
- Massoud Amini, Ian F. Putnam, and Sarah Saeidi Gholikandi, Order on the homology groups of Smale spaces, Pacific J. Math. 288 (2017), no. 2, 257–288. MR 3646890, DOI 10.2140/pjm.2017.288.257
- Alfonso Artigue, Joaquin Brum, and Rafael Potrie, Local product structure for expansive homeomorphisms, Topology Appl. 156 (2009), no. 4, 674–685. MR 2492953, DOI 10.1016/j.topol.2008.09.004
- Robin J. Deeley, Magnus Goffeng, and Allan Yashinski, Smale space $C^*$-algebras have nonzero projections, Proc. Amer. Math. Soc. 148 (2020), no. 4, 1625–1639. MR 4069199, DOI 10.1090/proc/14837
- Robin J. Deeley and Karen R. Strung, Nuclear dimension and classification of $\rm C^*$-algebras associated to Smale spaces, Trans. Amer. Math. Soc. 370 (2018), no. 5, 3467–3485. MR 3766855, DOI 10.1090/tran/7046
- Tomasz Downarowicz, Survey of odometers and Toeplitz flows, Algebraic and topological dynamics, Contemp. Math., vol. 385, Amer. Math. Soc., Providence, RI, 2005, pp. 7–37. MR 2180227, DOI 10.1090/conm/385/07188
- Carla Farsi, Alex Kumjian, David Pask, and Aidan Sims, Ample groupoids: equivalence, homology, and Matui’s HK conjecture, Münster J. Math. 12 (2019), no. 2, 411–451. MR 4030921, DOI 10.17879/53149724091
- Todd Fisher, Resolving extensions of finitely presented systems, Acta Appl. Math. 126 (2013), 131–163. MR 3077946, DOI 10.1007/s10440-013-9811-x
- David Fried, Finitely presented dynamical systems, Ergodic Theory Dynam. Systems 7 (1987), no. 4, 489–507. MR 922362, DOI 10.1017/S014338570000417X
- Koichi Hiraide, Expansive homeomorphisms of compact surfaces are pseudo-Anosov, Proc. Japan Acad. Ser. A Math. Sci. 63 (1987), no. 9, 337–338. MR 965467
- Koichi Hiraide, There are no expansive homeomorphisms on $S^2$, Dynamical systems and singular phenomena (Kyoto, 1986) World Sci. Adv. Ser. Dynam. Systems, vol. 2, World Sci. Publishing, Singapore, 1987, pp. 214–220. MR 894964
- S. Jackson, A. S. Kechris, and A. Louveau, Countable Borel equivalence relations, J. Math. Log. 2 (2002), no. 1, 1–80. MR 1900547, DOI 10.1142/S0219061302000138
- Jorge Lewowicz, Expansive homeomorphisms of surfaces, Bol. Soc. Brasil. Mat. (N.S.) 20 (1989), no. 1, 113–133. MR 1129082, DOI 10.1007/BF02585472
- J. Lewowicz and M. Cerminara, Expansive systems, Scholarpedia, 3 (2008), no. 12, 2927, Revision #91247.
- Douglas Lind and Brian Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995. MR 1369092, DOI 10.1017/CBO9780511626302
- Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374, DOI 10.1017/CBO9780511809187
- Ieke Moerdijk, Classifying toposes and foliations, Ann. Inst. Fourier (Grenoble) 41 (1991), no. 1, 189–209 (English, with French summary). MR 1112197, DOI 10.5802/aif.1254
- Paul S. Muhly, Jean N. Renault, and Dana P. Williams, Equivalence and isomorphism for groupoid $C^\ast$-algebras, J. Operator Theory 17 (1987), no. 1, 3–22. MR 873460
- Ian F. Putnam, Lecture notes on C*-algebras, January 2019.
- Ian F. Putnam, $C^*$-algebras from Smale spaces, Canad. J. Math. 48 (1996), no. 1, 175–195. MR 1382481, DOI 10.4153/CJM-1996-008-2
- Ian F. Putnam, A homology theory for Smale spaces, Mem. Amer. Math. Soc. 232 (2014), no. 1094, viii+122. MR 3243636, DOI 10.1090/memo/1094
- Ian F. Putnam and Jack Spielberg, The structure of $C^\ast$-algebras associated with hyperbolic dynamical systems, J. Funct. Anal. 163 (1999), no. 2, 279–299. MR 1680475, DOI 10.1006/jfan.1998.3379
- Jean Renault, A groupoid approach to $C^{\ast }$-algebras, Lecture Notes in Mathematics, vol. 793, Springer, Berlin, 1980. MR 584266, DOI 10.1007/BFb0091072
- Jean Renault, Topological amenability is a Borel property, Math. Scand. 117 (2015), no. 1, 5–30. MR 3403785, DOI 10.7146/math.scand.a-22235
- David Ruelle, Noncommutative algebras for hyperbolic diffeomorphisms, Invent. Math. 93 (1988), no. 1, 1–13. MR 943921, DOI 10.1007/BF01393685
- David Ruelle, Thermodynamic formalism, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004. The mathematical structures of equilibrium statistical mechanics. MR 2129258, DOI 10.1017/CBO9780511617546
- Kazuhiro Sakai, Shadowing properties of $\scr L$-hyperbolic homeomorphisms, Topology Appl. 112 (2001), no. 3, 229–243. MR 1824161, DOI 10.1016/S0166-8641(00)00002-X
- Aidan Sims, Gábor Szabó, and Dana Williams, Operator algebras and dynamics: groupoids, crossed products, and Rokhlin dimension, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser/Springer, Cham, [2020] ©2020. Lecture notes from the Advanced Course held at Centre de Recerca Matemàtica (CRM) Barcelona, March 13–17, 2017; Edited by Francesc Perera. MR 4321941, DOI 10.1007/978-3-030-39713-5
- Aidan Sims and Dana P. Williams, Renault’s equivalence theorem for reduced groupoid $C^\ast$-algebras, J. Operator Theory 68 (2012), no. 1, 223–239. MR 2966043
- Andrew McDowell Stocker, Synchronizing Dynamical Systems, Groupoids, and C*-Algebras, ProQuest LLC, Ann Arbor, MI, 2022. Thesis (Ph.D.)–University of Colorado at Boulder. MR 4435212
- Andrew M. Stocker, Synchronizing Dynamical Systems: Shift Spaces and $K$-Theory, arXiv:2208.06200.
- Klaus Thomsen, $C^*$-algebras of homoclinic and heteroclinic structure in expansive dynamics, Mem. Amer. Math. Soc. 206 (2010), no. 970, x+122. MR 2667385, DOI 10.1090/S0065-9266-10-00581-8
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108, DOI 10.1007/978-1-4612-5775-2
Bibliographic Information
- Robin J. Deeley
- Affiliation: Department of Mathematics, University of Colorado Boulder, Campus Box 395, Boulder, Colorado 80309-0395
- MR Author ID: 741108
- Email: robin.deeley@colorado.edu
- Andrew M. Stocker
- Affiliation: Department of Mathematics, University of Colorado Boulder, Campus Box 395, Boulder, Colorado 80309-0395
- MR Author ID: 1548854
- Email: andrew.stocker@colorado.edu
- Received by editor(s): June 27, 2022
- Received by editor(s) in revised form: March 8, 2023, and April 12, 2023
- Published electronically: March 20, 2024
- Additional Notes: Both the first author and the second author were partially supported by NSF Grant DMS 2000057.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 3055-3093
- MSC (2020): Primary 46L35, 37D20
- DOI: https://doi.org/10.1090/tran/8969
- MathSciNet review: 4744775