The $Q$-shaped derived category of a ring — compact and perfect objects
HTML articles powered by AMS MathViewer
- by Henrik Holm and Peter Jørgensen;
- Trans. Amer. Math. Soc. 377 (2024), 3095-3128
- DOI: https://doi.org/10.1090/tran/8979
- Published electronically: February 26, 2024
- HTML | PDF | Request permission
Abstract:
A chain complex can be viewed as a representation of a certain self-injective quiver with relations, $Q$. To define $Q$, include a vertex $q_n$ and an arrow $q_n \xrightarrow {\partial } q_{n-1}$ for each integer $n$. The relations are $\partial ^2 = 0$.
Replacing $Q$ by a general self-injective quiver with relations, it turns out that some of the key properties of chain complexes generalise. Indeed, consider the representations of such a $Q$ with values in ${}_{A}\mspace {-1mu}\operatorname {Mod}$ where $A$ is a ring. We showed in earlier work that these representations form the objects of the $Q$-shaped derived category, $\mathcal {D}_{Q}(A)$, which is triangulated and generalises the classic derived category $\mathcal {D}_{}(A)$. This follows ideas of Iyama and Minamoto.
While $\mathcal {D}_{Q}(A)$ has many good properties, it can also diverge dramatically from $\mathcal {D}_{}(A)$. For instance, let $Q$ be the quiver with one vertex $q$, one loop $\partial$, and the relation $\partial ^2 = 0$. By analogy with perfect complexes in the classic derived category, one may expect that a representation with a finitely generated free module placed at $q$ is a compact object of $\mathcal {D}_{Q}(A)$, but we will show that this is, in general, false.
The purpose of this paper, then, is to compare and contrast $\mathcal {D}_{Q}(A)$ and $\mathcal {D}_{}(A)$ by investigating several key classes of objects: Perfect and strictly perfect, compact, fibrant, and cofibrant.
References
- Luchezar L. Avramov, Ragnar-Olaf Buchweitz, and Srikanth Iyengar, Class and rank of differential modules, Invent. Math. 169 (2007), no. 1, 1–35. MR 2308849, DOI 10.1007/s00222-007-0041-6
- Luchezar L. Avramov and Hans-Bjørn Foxby, Homological dimensions of unbounded complexes, J. Pure Appl. Algebra 71 (1991), no. 2-3, 129–155. MR 1117631, DOI 10.1016/0022-4049(91)90144-Q
- Marcel Bökstedt and Amnon Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993), no. 2, 209–234. MR 1214458
- A. I. Bondal and M. M. Kapranov, Representable functors, Serre functors, and reconstructions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 6, 1183–1205, 1337 (Russian); English transl., Math. USSR-Izv. 35 (1990), no. 3, 519–541. MR 1039961, DOI 10.1070/IM1990v035n03ABEH000716
- F. Michel Dekking, The structure of Zeckendorf expansions, Integers 21 (2021), Paper No. A6, 10. MR 4198883, DOI 10.1080/14697688.2020.1828609
- Ivo Dell’Ambrogio, Greg Stevenson, and Jan Šťovíček, Gorenstein homological algebra and universal coefficient theorems, Math. Z. 287 (2017), no. 3-4, 1109–1155. MR 3719530, DOI 10.1007/s00209-017-1862-7
- E. Enochs, S. Estrada, and J. R. García-Rozas, Gorenstein categories and Tate cohomology on projective schemes, Math. Nachr. 281 (2008), no. 4, 525–540. MR 2404296, DOI 10.1002/mana.200510622
- Edgar E. Enochs and Overtoun M. G. Jenda, Relative homological algebra, De Gruyter Expositions in Mathematics, vol. 30, Walter de Gruyter & Co., Berlin, 2000. MR 1753146, DOI 10.1515/9783110803662
- Steven Finch, The on-line encyclopedia of integer sequences, Math. Intelligencer 43 (2021), no. 2, 146–147. MR 4278491, DOI 10.1007/s00283-021-10060-2
- J. R. García Rozas, Covers and envelopes in the category of complexes of modules, Chapman & Hall/CRC Research Notes in Mathematics, vol. 407, Chapman & Hall/CRC, Boca Raton, FL, 1999. MR 1693036
- James Gillespie, Model structures on exact categories, J. Pure Appl. Algebra 215 (2011), no. 12, 2892–2902. MR 2811572, DOI 10.1016/j.jpaa.2011.04.010
- James Gillespie, Hereditary abelian model categories, Bull. Lond. Math. Soc. 48 (2016), no. 6, 895–922. MR 3608936, DOI 10.1112/blms/bdw051
- James Gillespie, Models for homotopy categories of injectives and Gorenstein injectives, Comm. Algebra 45 (2017), no. 6, 2520–2545. MR 3594536, DOI 10.1080/00927872.2016.1233215
- Rüdiger Göbel and Jan Trlifaj, Approximations and endomorphism algebras of modules, De Gruyter Expositions in Mathematics, vol. 41, Walter de Gruyter GmbH & Co. KG, Berlin, 2006. MR 2251271, DOI 10.1515/9783110199727
- Dieter Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. MR 935124, DOI 10.1017/CBO9780511629228
- Henrik Holm and Peter Jørgensen, Cotorsion pairs in categories of quiver representations, Kyoto J. Math. 59 (2019), no. 3, 575–606. MR 3990178, DOI 10.1215/21562261-2018-0018
- Henrik Holm and Peter Jørgensen, Model categories of quiver representations, Adv. Math. 357 (2019), article no. 106826, 46 pp. MR 4013804
- Henrik Holm and Peter Jørgensen, The ${Q}$-shaped derived category of a ring, J. London Math. Soc. (2), 54 pp., published online DOI: 10.1112/jlms.12662, 2022.
- Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63, American Mathematical Society, Providence, RI, 1999. MR 1650134
- Mark Hovey, Cotorsion pairs, model category structures, and representation theory, Math. Z. 241 (2002), no. 3, 553–592. MR 1938704, DOI 10.1007/s00209-002-0431-9
- Alina Iacob, Direct sums of exact covers of complexes, Math. Scand. 98 (2006), no. 2, 161–181. MR 2243700, DOI 10.7146/math.scand.a-14989
- Alina Iacob and Srikanth B. Iyengar, Homological dimensions and regular rings, J. Algebra 322 (2009), no. 10, 3451–3458. MR 2568347, DOI 10.1016/j.jalgebra.2009.08.006
- Takeshi Ishikawa, On injective modules and flat modules, J. Math. Soc. Japan 17 (1965), 291–296. MR 188272, DOI 10.2969/jmsj/01730291
- Osamu Iyama and Hiroyuki Minamoto, $\mathscr {A}$-derived categories, in preparation.
- Osamu Iyama and Hiroyuki Minamoto, On a generalization of complexes and their derived categories, extended abstract of a talk at the 47th Ring and Representation Theory Symposium, Osaka City University, 2014. MR 3363946
- G. M. Kelly, Basic concepts of enriched category theory, Repr. Theory Appl. Categ. 10 (2005), vi+137. Reprint of the 1982 original [Cambridge Univ. Press, Cambridge; MR0651714]. MR 2177301
- Henning Krause, Homological theory of representations, Cambridge Studies in Advanced Mathematics, vol. 195, Cambridge University Press, Cambridge, 2022. MR 4327095
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- Amnon Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236. MR 1308405, DOI 10.1090/S0894-0347-96-00174-9
- Amnon Neeman, Triangulated categories, Annals of Mathematics Studies, vol. 148, Princeton University Press, Princeton, NJ, 2001. MR 1812507, DOI 10.1515/9781400837212
- Jeremy Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra 61 (1989), no. 3, 303–317. MR 1027750, DOI 10.1016/0022-4049(89)90081-9
- Raphaël Rouquier, Dimensions of triangulated categories, J. K-Theory 1 (2008), no. 2, 193–256. MR 2434186, DOI 10.1017/is007011012jkt010
- Manuel Saorín and Jan Šťovíček, On exact categories and applications to triangulated adjoints and model structures, Adv. Math. 228 (2011), no. 2, 968–1007. MR 2822215, DOI 10.1016/j.aim.2011.05.025
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
- E. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41 (1972), 179–182 (French, with English summary). MR 308032
Bibliographic Information
- Henrik Holm
- Affiliation: Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
- MR Author ID: 730088
- ORCID: 0000-0002-6895-6493
- Email: holm@math.ku.dk
- Peter Jørgensen
- Affiliation: Department of Mathematics, Aarhus University, Ny Munkegade 118, Building 1530, 8000 Aarhus C, Denmark
- MR Author ID: 601258
- Email: peter.jorgensen@math.au.dk
- Received by editor(s): September 28, 2022
- Received by editor(s) in revised form: April 21, 2023
- Published electronically: February 26, 2024
- Additional Notes: This work was supported by a DNRF Chair from the Danish National Research Foundation (grant DNRF156), by a Research Project 2 from the Independent Research Fund Denmark (grant 1026-00050B), and by Aarhus University Research Foundation (grant AUFF-F-2020-7-16).
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 3095-3128
- MSC (2020): Primary 16E35, 18G80, 18N40
- DOI: https://doi.org/10.1090/tran/8979
- MathSciNet review: 4744776