Chern-Weil theory for $\infty$-local systems
HTML articles powered by AMS MathViewer
- by Camilo Arias Abad, Santiago Pineda Montoya and Alexander Quintero Vélez;
- Trans. Amer. Math. Soc. 377 (2024), 3129-3171
- DOI: https://doi.org/10.1090/tran/9068
- Published electronically: February 21, 2024
- HTML | PDF | Request permission
Abstract:
Let $G$ be a compact connected Lie group with Lie algebra $\mathfrak {g}$. We show that the category $\operatorname {\mathbf {Loc}} _\infty (BG)$ of $\infty$-local systems on the classifying space of $G$ can be described infinitesimally as the category ${\operatorname {\mathbf {Inf}\mathbf {Loc}}} _{\infty }(\mathfrak {g})$ of basic $\mathfrak {g}$-$L_\infty$ spaces. Moreover, we show that, given a principal bundle $\pi \colon P \to X$ with structure group $G$ and any connection $\theta$ on $P$, there is a differntial graded (DG) functor \begin{equation*} \mathscr {CW}_{\theta } \colon \mathbf {Inf}\mathbf {Loc}_{\infty }(\mathfrak {g}) \longrightarrow \mathbf {Loc}_{\infty }(X), \end{equation*} which corresponds to the pullback functor by the classifying map of $P$. The DG functors associated to different connections are related by an $A_\infty$-natural isomorphism. This construction provides a categorification of the Chern-Weil homomorphism, which is recovered by applying the functor $\mathscr {CW}_{\theta }$ to the endomorphisms of the constant $\infty$-local system.References
- Camilo Arias Abad and Florian Schätz, Flat $Z$-graded connections and loop spaces, Int. Math. Res. Not. IMRN 4 (2018), 961–1008. MR 3801453, DOI 10.1093/imrn/rnw258
- A. Alekseev and E. Meinrenken, The non-commutative Weil algebra, Invent. Math. 139 (2000), no. 1, 135–172. MR 1728878, DOI 10.1007/s002229900025
- Anton Alekseev and Eckhard Meinrenken, Lie theory and the Chern-Weil homomorphism, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 2, 303–338 (English, with English and French summaries). MR 2144989, DOI 10.1016/j.ansens.2004.11.004
- Camilo Arias Abad, Singular chains on Lie groups and the Cartan relations I, Math. Ann. 381 (2021), no. 3-4, 1477–1509. MR 4333422, DOI 10.1007/s00208-021-02160-3
- Camilo Arias Abad and Marius Crainic, Representations up to homotopy of Lie algebroids, J. Reine Angew. Math. 663 (2012), 91–126. MR 2889707, DOI 10.1515/CRELLE.2011.095
- Camilo Arias Abad and Alexander Quintero Vélez, Singular chains on Lie groups and the Cartan relations II, arXiv:2007.07934 (2020).
- Camilo Arias Abad, Alexander Quintero Vélez, and Sebastián Vélez Vásquez, An $\rm A_\infty$ version of the Poincaré lemma, Pacific J. Math. 302 (2019), no. 2, 385–412. MR 4036735, DOI 10.2140/pjm.2019.302.385
- Camilo Arias Abad and Florian Schätz, The $\mathsf {A}_\infty$ de Rham theorem and integration of representations up to homotopy, Int. Math. Res. Not. IMRN 16 (2013), 3790–3855. MR 3090711, DOI 10.1093/imrn/rns166
- Jonathan Block and Aaron M. Smith, The higher Riemann-Hilbert correspondence, Adv. Math. 252 (2014), 382–405. MR 3144234, DOI 10.1016/j.aim.2013.11.001
- Henri Cartan, Cohomologie réelle d’un espace fibré principal différentiable, Sémin. Cartan Exposés 19 (1949).
- Henri Cartan, Notions d’algèbre différentielle; application aux groupes de lie et aux variétés où opère un groupe de lie. colloque de topologie (espaces fibrés), bruxelles, 1950, Reprinted in [GS] 1 (1951), no. 7, 7–27.
- David Chataur and Luc Menichi, String topology of classifying spaces, J. Reine Angew. Math. 669 (2012), 1–45. MR 2980450, DOI 10.1515/CRELLE.2011.140
- J. Daniel Christensen and Enxin Wu, The homotopy theory of diffeological spaces, New York J. Math. 20 (2014), 1269–1303. MR 3312059
- Paul G. Goerss and John F. Jardine, Simplicial homotopy theory, Modern Birkhäuser Classics, Birkhäuser Verlag, Basel, 2009. Reprint of the 1999 edition [MR1711612]. MR 2840650, DOI 10.1007/978-3-0346-0189-4
- Werner Greub, Stephen Halperin, and Ray Vanstone, Connections, curvature, and cohomology. Vol. I: De Rham cohomology of manifolds and vector bundles, Pure and Applied Mathematics, Vol. 47, Academic Press, New York-London, 1972. MR 336650
- Victor W. Guillemin and Shlomo Sternberg, Supersymmetry and equivariant de Rham theory, Mathematics Past and Present, Springer-Verlag, Berlin, 1999. With an appendix containing two reprints by Henri Cartan [ MR0042426 (13,107e); MR0042427 (13,107f)]. MR 1689252, DOI 10.1007/978-3-662-03992-2
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- Richard Hepworth and Anssi Lahtinen, On string topology of classifying spaces, Adv. Math. 281 (2015), 394–507. MR 3366844, DOI 10.1016/j.aim.2015.03.022
- Julian V. S. Holstein, Morita cohomology, Math. Proc. Cambridge Philos. Soc. 158 (2015), no. 1, 1–26. MR 3300312, DOI 10.1017/S0305004114000516
- J. F. Jardine, Simplicial presheaves, J. Pure Appl. Algebra 47 (1987), no. 1, 35–87. MR 906403, DOI 10.1016/0022-4049(87)90100-9
- André Joyal and Myles Tierney, Notes on simplicial homotopy theory, 2008. URL https://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern47.pdf.
- Bernhard Keller, On differential graded categories, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 151–190. MR 2275593
- Anthony W. Knapp, Lie groups beyond an introduction, Progress in Mathematics, vol. 140, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1399083, DOI 10.1007/978-1-4757-2453-0
- Jacob Lurie, Kerodon, 2020. URL https://kerodon.net/.
- MathOverflow, Why does the singular simplicial space geometrically realize to the original space?, 2014. URL https://mathoverflow.net/questions/171662/why-does-the-singular-simplicial-space-geometrically-realize-to-the-original-spa.
- Rajan Amit Mehta and Marco Zambon, $L_\infty$-algebra actions, Differential Geom. Appl. 30 (2012), no. 6, 576–587. MR 2996854, DOI 10.1016/j.difgeo.2012.07.006
- Eckhard Meinrenken, Equivariant cohomology and the cartan model, Encyclopedia of Mathematical Physics, 2006, pp. 242–250.
- Eckhard Meinrenken, Clifford algebras and Lie theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 58, Springer, Heidelberg, 2013. MR 3052646, DOI 10.1007/978-3-642-36216-3
- Ben Reinhold, $l_{\infty }$-Algebras and their cohomology, Emergent Sci. 3 (2019), 4.
- Christian Rüschoff, Lecture notes: simplicial sets, 2017. URL https://www.mathi.uni-heidelberg.de/~rueschoff/ss17sset/sset.pdf.
Bibliographic Information
- Camilo Arias Abad
- Affiliation: Escuela de Matemáticas, Universidad Nacional de Colombia Sede Medellín, Carrera 65 $\#$ 59A–110, Medellín, Colombia
- MR Author ID: 960166
- Email: carias0@unal.edu.co
- Santiago Pineda Montoya
- Affiliation: Escuela de Matemáticas, Universidad Nacional de Colombia Sede Medellín, Carrera 65 $\#$ 59A–110, Medellín, Colombia
- Email: sapinedamo@unal.edu.co
- Alexander Quintero Vélez
- Affiliation: Escuela de Matemáticas, Universidad Nacional de Colombia Sede Medellín, Carrera 65 $\#$ 59A–110, Medellín, Colombia
- MR Author ID: 869279
- Email: aquinte2@unal.edu.co
- Received by editor(s): February 21, 2022
- Received by editor(s) in revised form: November 30, 2022, and May 24, 2023
- Published electronically: February 21, 2024
- Additional Notes: The authors were supported by Colciencias through their grant Estructuras lineales en topología y geometría, with contract number FP44842-013-2018. This work was also supported by the Alexander von Humboldt foundation through the Humboldt Institutspartnerschaftet Representations of Gerbes and higher holonomies.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 3129-3171
- MSC (2020): Primary 55R40; Secondary 55P65, 18G35
- DOI: https://doi.org/10.1090/tran/9068
- MathSciNet review: 4744777