The Laplace spectrum on conformally compact manifolds
HTML articles powered by AMS MathViewer
- by Nelia Charalambous and Julie Rowlett;
- Trans. Amer. Math. Soc. 377 (2024), 3373-3395
- DOI: https://doi.org/10.1090/tran/9107
- Published electronically: February 26, 2024
- HTML | PDF | Request permission
Abstract:
We consider the spectrum of the Laplace operator acting on $\mathcal {L}^p$ over a conformally compact manifold for $1 \leq p \leq \infty$. We prove that for $p \neq 2$ this spectrum always contains an open region of the complex plane. We further show that the spectrum is contained within a certain parabolic region of the complex plane. These regions depend on the value of $p$, the dimension of the manifold, and the values of the sectional curvatures approaching the boundary.References
- Wolfgang Arendt, Gaussian estimates and interpolation of the spectrum in $L^p$, Differential Integral Equations 7 (1994), no. 5-6, 1153–1168. MR 1269649
- David Borthwick, Scattering theory for conformally compact metrics with variable curvature at infinity, J. Funct. Anal. 184 (2001), no. 2, 313–376. MR 1851001, DOI 10.1006/jfan.2001.3770
- Nelia Charalambous, On the $L^p$ independence of the spectrum of the Hodge Laplacian on non-compact manifolds, J. Funct. Anal. 224 (2005), no. 1, 22–48. MR 2139103, DOI 10.1016/j.jfa.2004.11.003
- Nelia Charalambous and Nadine Große, On the $L^p$ spectrum of the Dirac operator, J. Geom. Anal. 33 (2023), no. 2, Paper No. 44, 24. MR 4523513, DOI 10.1007/s12220-022-01102-y
- Nelia Charalambous and Zhiqin Lu, $L^p$ spectral theory for the Laplacian on forms. arXiv:2401.02136.
- Nelia Charalambous and Zhiqin Lu, Heat kernel estimates and the essential spectrum on weighted manifolds, J. Geom. Anal. 25 (2015), no. 1, 536–563. MR 3299292, DOI 10.1007/s12220-013-9438-1
- Jeff Cheeger, Mikhail Gromov, and Michael Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geometry 17 (1982), no. 1, 15–53. MR 658471
- E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239, DOI 10.1017/CBO9780511566158
- E. B. Davies, $L^p$ spectral independence and $L^1$ analyticity, J. London Math. Soc. (2) 52 (1995), no. 1, 177–184. MR 1345724, DOI 10.1112/jlms/52.1.177
- E. B. Davies, $L^p$ spectral theory of higher-order elliptic differential operators, Bull. London Math. Soc. 29 (1997), no. 5, 513–546. MR 1458713, DOI 10.1112/S002460939700324X
- E. B. Davies, Barry Simon, and Michael Taylor, $L^p$ spectral theory of Kleinian groups, J. Funct. Anal. 78 (1988), no. 1, 116–136. MR 937635, DOI 10.1016/0022-1236(88)90135-8
- C. L. Epstein, R. B. Melrose, and G. A. Mendoza, Resolvent of the Laplacian on strictly pseudoconvex domains, Acta Math. 167 (1991), no. 1-2, 1–106. MR 1111745, DOI 10.1007/BF02392446
- Charles Fefferman and C. Robin Graham, Conformal invariants, Astérisque Numéro Hors Série (1985), 95–116. The mathematical heritage of Élie Cartan (Lyon, 1984). MR 837196
- S. W. Hawking and Don N. Page, Thermodynamics of black holes in anti-de Sitter space, Comm. Math. Phys. 87 (1982/83), no. 4, 577–588. MR 691045, DOI 10.1007/BF01208266
- Rainer Hempel and Jürgen Voigt, The spectrum of a Schrödinger operator in $L_p(\textbf {R}^\nu )$ is $p$-independent, Comm. Math. Phys. 104 (1986), no. 2, 243–250. MR 836002, DOI 10.1007/BF01211592
- Lizhen Ji and Andreas Weber, $L^p$ spectral theory and heat dynamics of locally symmetric spaces, J. Funct. Anal. 258 (2010), no. 4, 1121–1139. MR 2565835, DOI 10.1016/j.jfa.2009.11.011
- Lizhen Ji and Andreas Weber, The $L^p$ spectrum and heat dynamics of locally symmetric spaces of higher rank, Ergodic Theory Dynam. Systems 35 (2015), no. 5, 1524–1545. MR 3365732, DOI 10.1017/etds.2014.3
- Peer Christian Kunstmann, Heat kernel estimates and $L^p$ spectral independence of elliptic operators, Bull. London Math. Soc. 31 (1999), no. 3, 345–353. MR 1673414, DOI 10.1112/S0024609398005530
- Yu. A. Kordyukov, $L^p$-theory of elliptic differential operators on manifolds of bounded geometry, Acta Appl. Math. 23 (1991), no. 3, 223–260. MR 1120831, DOI 10.1007/BF00047137
- Rafe Mazzeo, The Hodge cohomology of a conformally compact metric, J. Differential Geom. 28 (1988), no. 2, 309–339. MR 961517
- Rafe R. Mazzeo and Richard B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987), no. 2, 260–310. MR 916753, DOI 10.1016/0022-1236(87)90097-8
- Rafe Mazzeo and András Vasy, Analytic continuation of the resolvent of the Laplacian on symmetric spaces of noncompact type, J. Funct. Anal. 228 (2005), no. 2, 311–368. MR 2175410, DOI 10.1016/j.jfa.2004.10.003
- Roger Penrose, Asymptotic properties of fields and space-times, Phys. Rev. Lett. 10 (1963), 66–68. MR 149912, DOI 10.1103/PhysRevLett.10.66
- R. Penrose, Zero rest-mass fields including gravitation: Asymptotic behaviour, Proc. Roy. Soc. London Ser. A 284 (1965), 159–203. MR 175590, DOI 10.1098/rspa.1965.0058
- Walter Roelcke, Über den Laplace-Operator auf Riemannschen Mannigfaltigkeiten mit diskontinuierlichen Gruppen, Math. Nachr. 21 (1960), 131–149 (German). MR 151927, DOI 10.1002/mana.19600210303
- Antônio Sá Barreto and Yiran Wang, The semiclassical resolvent on conformally compact manifolds with variable curvature at infinity, Comm. Partial Differential Equations 41 (2016), no. 8, 1230–1302. MR 3532393, DOI 10.1080/03605302.2016.1190377
- Laurent Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom. 36 (1992), no. 2, 417–450. MR 1180389
- Robert S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, J. Functional Analysis 52 (1983), no. 1, 48–79. MR 705991, DOI 10.1016/0022-1236(83)90090-3
- Karl-Theodor Sturm, On the $L^p$-spectrum of uniformly elliptic operators on Riemannian manifolds, J. Funct. Anal. 118 (1993), no. 2, 442–453. MR 1250269, DOI 10.1006/jfan.1993.1150
- Michael E. Taylor, $L^p$-estimates on functions of the Laplace operator, Duke Math. J. 58 (1989), no. 3, 773–793. MR 1016445, DOI 10.1215/S0012-7094-89-05836-5
- Jiaping Wang, The spectrum of the Laplacian on a manifold of nonnegative Ricci curvature, Math. Res. Lett. 4 (1997), no. 4, 473–479. MR 1470419, DOI 10.4310/MRL.1997.v4.n4.a4
Bibliographic Information
- Nelia Charalambous
- Affiliation: Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, CY-1678 Nicosia, Cyprus
- MR Author ID: 760526
- ORCID: 0000-0002-5241-1309
- Email: charalambous.nelia@ucy.ac.cy
- Julie Rowlett
- Affiliation: Mathematical Sciences, Chalmers University of Technology, SE-412 96 Gothenburg; and University of Gothenburg, SE-412 96 Gothenburg, Sweden
- MR Author ID: 860217
- ORCID: 0000-0002-5724-3252
- Email: julie.rowlett@chalmers.se
- Received by editor(s): June 15, 2023
- Received by editor(s) in revised form: August 12, 2023, and October 26, 2023
- Published electronically: February 26, 2024
- Additional Notes: The first author was partially supported by a University of Cyprus Internal Grant and the second author was supported by the Swedish Research Council grant 2018-03873 while this work was in progress.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 3373-3395
- MSC (2020): Primary 58C40
- DOI: https://doi.org/10.1090/tran/9107
- MathSciNet review: 4744783