A higher Gross–Zagier formula and the structure of Selmer groups
HTML articles powered by AMS MathViewer
- by Chan-Ho Kim;
- Trans. Amer. Math. Soc. 377 (2024), 3691-3725
- DOI: https://doi.org/10.1090/tran/9125
- Published electronically: March 20, 2024
- HTML | PDF | Request permission
Abstract:
We describe a Kolyvagin system-theoretic refinement of Gross–Zagier formula by comparing Heegner point Kolyvagin systems with Kurihara numbers when the root number of a rational elliptic curve $E$ over an imaginary quadratic field $K$ is $-1$. When the root number of $E$ over $K$ is 1, we first establish the structure theorem of the $p^\infty$-Selmer group of $E$ over $K$. The description is given by the values of certain families of quaternionic automorphic forms, which is a part of bipartite Euler systems. By comparing bipartite Euler systems with Kurihara numbers, we also obtain an analogous refinement of Waldspurger formula. No low analytic rank assumption is imposed in both refinements.
We also prove the equivalence between the non-triviality of various “Kolyvagin systems” and the corresponding main conjecture localized at the augmentation ideal. As consequences, we obtain new applications of (weaker versions of) the Heegner point main conjecture and the anticyclotomic main conjecture to the structure of $p^\infty$-Selmer groups of elliptic curves of arbitrary rank. In particular, the Heegner point main conjecture localized at the augmentation ideal implies the strong rank one $p$-converse to the theorem of Gross–Zagier and Kolyvagin.
References
- Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic curves over $\mathbf Q$: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843–939. MR 1839918, DOI 10.1090/S0894-0347-01-00370-8
- A. A. Burungale, F. Castella, G. Grossi, and C. Skinner, Indivisibility of Kolyvagin systems and Iwasawa theory, Preprint, arXiv:2312.09301.
- Ashay Burungale, Francesc Castella, and Chan-Ho Kim, A proof of Perrin-Riou’s Heegner point main conjecture, Algebra Number Theory 15 (2021), no. 7, 1627–1653. MR 4333660, DOI 10.2140/ant.2021.15.1627
- M. Bertolini and H. Darmon, Iwasawa’s main conjecture for elliptic curves over anticyclotomic $\Bbb Z_p$-extensions, Ann. of Math. (2) 162 (2005), no. 1, 1–64. MR 2178960, DOI 10.4007/annals.2005.162.1
- Massimo Bertolini, Henri Darmon, and Rodolfo Venerucci, Heegner points and Beilinson-Kato elements: a conjecture of Perrin-Riou, Adv. Math. 398 (2022), Paper No. 108172, 50. MR 4379203, DOI 10.1016/j.aim.2021.108172
- Daniel Bump, Solomon Friedberg, and Jeffrey Hoffstein, Nonvanishing theorems for $L$-functions of modular forms and their derivatives, Invent. Math. 102 (1990), no. 3, 543–618. MR 1074487, DOI 10.1007/BF01233440
- K. Büyükboduk, R. Pollack, and S. Sasaki, $p$-Adic Gross–Zagier formula at critical slope and a conjecture of Perrin-Riou, Preprint, arXiv:1811.08216.
- A. A. Burungale, C. Skinner, Y. Tian, and X. Wan, Zeta elements for elliptic curves and application, In preparation.
- Ashay A. Burungale and Ye Tian, $p$-converse to a theorem of Gross-Zagier, Kolyvagin and Rubin, Invent. Math. 220 (2020), no. 1, 211–253. MR 4071412, DOI 10.1007/s00222-019-00929-7
- Kâzım Büyükboduk, Tamagawa defect of Euler systems, J. Number Theory 129 (2009), no. 2, 402–417. MR 2473887, DOI 10.1016/j.jnt.2008.07.003
- Masataka Chida and Ming-Lun Hsieh, On the anticyclotomic Iwasawa main conjecture for modular forms, Compos. Math. 151 (2015), no. 5, 863–897. MR 3347993, DOI 10.1112/S0010437X14007787
- Masataka Chida and Ming-Lun Hsieh, Special values of anticyclotomic $L$-functions for modular forms, J. Reine Angew. Math. 741 (2018), 87–131. MR 3836144, DOI 10.1515/crelle-2015-0072
- Christophe Cornut, Mazur’s conjecture on higher Heegner points, Invent. Math. 148 (2002), no. 3, 495–523. MR 1908058, DOI 10.1007/s002220100199
- Francesc Castella and Xin Wan, The Iwasawa main conjectures for $\rm GL_2$ and derivatives of $p$-adic $L$-functions, Adv. Math. 400 (2022), Paper No. 108266, 45. MR 4387238, DOI 10.1016/j.aim.2022.108266
- Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of $L$-series, Invent. Math. 84 (1986), no. 2, 225–320. MR 833192, DOI 10.1007/BF01388809
- Benjamin Howard, The Heegner point Kolyvagin system, Compos. Math. 140 (2004), no. 6, 1439–1472. MR 2098397, DOI 10.1112/S0010437X04000569
- Benjamin Howard, Bipartite Euler systems, J. Reine Angew. Math. 597 (2006), 1–25. MR 2264314, DOI 10.1515/CRELLE.2006.062
- Dimitar Jetchev, Global divisibility of Heegner points and Tamagawa numbers, Compos. Math. 144 (2008), no. 4, 811–826. MR 2441246, DOI 10.1112/S0010437X08003497
- Dimitar Jetchev, Christopher Skinner, and Xin Wan, The Birch and Swinnerton-Dyer formula for elliptic curves of analytic rank one, Camb. J. Math. 5 (2017), no. 3, 369–434. MR 3684675, DOI 10.4310/CJM.2017.v5.n3.a2
- Kazuya Kato, $p$-adic Hodge theory and values of zeta functions of modular forms, Astérisque 295 (2004), ix, 117–290 (English, with English and French summaries). Cohomologies $p$-adiques et applications arithmétiques. III. MR 2104361
- C.-H. Kim, The structure of Selmer groups and the Iwasawa main conjecture for elliptic curves, Submitted, arXiv:2203.12159.
- Chan-Ho Kim, Overconvergent quaternionic forms and anticyclotomic $p$-adic $L$-functions, Publ. Mat. 63 (2019), no. 2, 727–767. MR 3980939, DOI 10.5565/PUBLMAT6321910
- V. A. Kolyvagin, Euler systems, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 435–483. MR 1106906
- V. A. Kolyvagin, On the structure of Selmer groups, Math. Ann. 291 (1991), no. 2, 253–259. MR 1129365, DOI 10.1007/BF01445205
- Chan-Ho Kim, Robert Pollack, and Tom Weston, On the freeness of anticyclotomic Selmer groups of modular forms, Int. J. Number Theory 13 (2017), no. 6, 1443–1455. MR 3656202, DOI 10.1142/S1793042117500804
- Masato Kurihara, Refined Iwasawa theory for $p$-adic representations and the structure of Selmer groups, Münster J. Math. 7 (2014), no. 1, 149–223. MR 3271244
- Masato Kurihara, The structure of Selmer groups of elliptic curves and modular symbols, Iwasawa theory 2012, Contrib. Math. Comput. Sci., vol. 7, Springer, Heidelberg, 2014, pp. 317–356. MR 3586819
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162. MR 482230, DOI 10.1007/BF01390348
- M. Ram Murty and V. Kumar Murty, Mean values of derivatives of modular $L$-series, Ann. of Math. (2) 133 (1991), no. 3, 447–475. MR 1109350, DOI 10.2307/2944316
- Barry Mazur and Karl Rubin, Kolyvagin systems, Mem. Amer. Math. Soc. 168 (2004), no. 799, viii+96. MR 2031496, DOI 10.1090/memo/0799
- B. Mazur and J. Tate, Refined conjectures of the “Birch and Swinnerton-Dyer type”, Duke Math. J. 54 (1987), no. 2, 711–750. MR 899413, DOI 10.1215/S0012-7094-87-05431-7
- Jan Nekovář, The Euler system method for CM points on Shimura curves, $L$-functions and Galois representations, London Math. Soc. Lecture Note Ser., vol. 320, Cambridge Univ. Press, Cambridge, 2007, pp. 471–547. MR 2392363, DOI 10.1017/CBO9780511721267.014
- Bernadette Perrin-Riou, Fonctions $L$ $p$-adiques, théorie d’Iwasawa et points de Heegner, Bull. Soc. Math. France 115 (1987), no. 4, 399–456 (French, with English summary). MR 928018, DOI 10.24033/bsmf.2085
- Bernadette Perrin-Riou, Fonctions $L$ $p$-adiques d’une courbe elliptique et points rationnels, Ann. Inst. Fourier (Grenoble) 43 (1993), no. 4, 945–995 (French, with English and French summaries). MR 1252935, DOI 10.5802/aif.1362
- Robert Pollack and Tom Weston, On anticyclotomic $\mu$-invariants of modular forms, Compos. Math. 147 (2011), no. 5, 1353–1381. MR 2834724, DOI 10.1112/S0010437X11005318
- K. Rubin and A. Silverberg, Twists of elliptic curves of rank at least four, Ranks of elliptic curves and random matrix theory, London Math. Soc. Lecture Note Ser., vol. 341, Cambridge Univ. Press, Cambridge, 2007, pp. 177–188. MR 2322343, DOI 10.1017/CBO9780511735158.009
- Ryotaro Sakamoto, $p$-Selmer group and modular symbols, Doc. Math. 27 (2022), 1891–1922. MR 4574229, DOI 10.4171/dm/x21
- Christopher Skinner and Eric Urban, The Iwasawa main conjectures for $\rm GL_2$, Invent. Math. 195 (2014), no. 1, 1–277. MR 3148103, DOI 10.1007/s00222-013-0448-1
- W. Stein and J. Weinstein, Kolyvagin classes on elliptic curves: structure, distribution, and algorithms, Unpublished manuscript.
- N. Sweeting, Kolyvagin’s conjecture, bipartite Euler systems and higher congruences of modular forms, Preprint available at https://scholar.harvard.edu/naomisweeting and arXiv:2012.11771.
- V. Vatsal, Uniform distribution of Heegner points, Invent. Math. 148 (2002), no. 1, 1–46. MR 1892842, DOI 10.1007/s002220100183
- V. Vatsal, Special values of anticyclotomic $L$-functions, Duke Math. J. 116 (2003), no. 2, 219–261. MR 1953292, DOI 10.1215/S0012-7094-03-11622-1
- Marie-France Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980 (French). MR 580949, DOI 10.1007/BFb0091027
- J.-L. Waldspurger, Sur les valeurs de certaines fonctions $L$ automorphes en leur centre de symétrie, Compositio Math. 54 (1985), no. 2, 173–242 (French). MR 783511
- Xin Wan, Heegner point Kolyvagin system and Iwasawa main conjecture, Acta Math. Sin. (Engl. Ser.) 37 (2021), no. 1, 104–120. MR 4204538, DOI 10.1007/s10114-021-8355-7
- Zhiwei Yun and Wei Zhang, Shtukas and the Taylor expansion of $L$-functions, Ann. of Math. (2) 186 (2017), no. 3, 767–911. MR 3702678, DOI 10.4007/annals.2017.186.3.2
- Zhiwei Yun and Wei Zhang, Shtukas and the Taylor expansion of $L$-functions (II), Ann. of Math. (2) 189 (2019), no. 2, 393–526. MR 3919362, DOI 10.4007/annals.2019.189.2.2
- Xinyi Yuan, Shou-Wu Zhang, and Wei Zhang, The Gross-Zagier formula on Shimura curves, Annals of Mathematics Studies, vol. 184, Princeton University Press, Princeton, NJ, 2013. MR 3237437
- M. Zanarella, On Howard’s main conjecture and the Heegner point Kolyvagin system, Preprint, arXiv:1908.09197.
- Wei Zhang, On arithmetic fundamental lemmas, Invent. Math. 188 (2012), no. 1, 197–252. MR 2897697, DOI 10.1007/s00222-011-0348-1
- Wei Zhang, The Birch–Swinnerton-Dyer conjecture and Heegner points: a survey, Current developments in mathematics 2013, Int. Press, Somerville, MA, 2014, pp. 169–203. MR 3307716
- Wei Zhang, Selmer groups and the indivisibility of Heegner points, Camb. J. Math. 2 (2014), no. 2, 191–253. MR 3295917, DOI 10.4310/CJM.2014.v2.n2.a2
- W. Zhang, Weil representation and arithmetic fundamental lemma, Ann. of Math. (2) 193 (2021), no. 3, 863–978. MR 4250392, DOI 10.4007/annals.2021.193.3.5
Bibliographic Information
- Chan-Ho Kim
- Affiliation: June E Huh Center for Mathematical Challenges, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea
- MR Author ID: 1214530
- Email: chanho.math@gmail.com
- Received by editor(s): April 11, 2023
- Received by editor(s) in revised form: September 6, 2023, November 22, 2023, and January 9, 2024
- Published electronically: March 20, 2024
- Additional Notes: This research was partially supported by a KIAS Individual Grant (SP054103) via the Center for Mathematical Challenges at Korea Institute for Advanced Study and by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. 2018R1C1B6007009).
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 3691-3725
- MSC (2020): Primary 11F67, 11G40, 11R23
- DOI: https://doi.org/10.1090/tran/9125
- MathSciNet review: 4744792