Hyperbolic Anderson model with Lévy white noise: Spatial ergodicity and fluctuation
HTML articles powered by AMS MathViewer
- by Raluca M. Balan and Guangqu Zheng;
- Trans. Amer. Math. Soc. 377 (2024), 4171-4221
- DOI: https://doi.org/10.1090/tran/9135
- Published electronically: February 29, 2024
- HTML | PDF | Request permission
Abstract:
In this paper, we study one-dimensional hyperbolic Anderson models (HAM) driven by space-time pure-jump Lévy white noise in a finite-variance setting. Motivated by recent active research on limit theorems for stochastic partial differential equations driven by Gaussian noises, we present the first study in this Lévy setting. In particular, we first establish the spatial ergodicity of the solution and then a quantitative central limit theorem (CLT) for the spatial averages of the solution to HAM in both Wasserstein distance and Kolmogorov distance, with the same rate of convergence. To achieve the first goal (i.e. spatial ergodicity), we exploit some basic properties of the solution and apply a Poincaré inequality in the Poisson setting, which requires delicate moment estimates on the Malliavin derivatives of the solution. Such moment estimates are obtained in a soft manner by observing a natural connection between the Malliavin derivatives of HAM and a HAM with Dirac delta velocity. To achieve the second goal (i.e. CLT), we need two key ingredients: (i) a univariate second-order Poincaré inequality in the Poisson setting that goes back to Last, Peccati, and Schulte (Probab. Theory Related Fields, 2016) and has been recently improved by Trauthwein (arXiv:2212.03782); (ii) aforementioned moment estimates of Malliavin derivatives up to second order. We also establish a corresponding functional CLT by (a) showing the convergence in finite-dimensional distributions and (b) verifying Kolmogorov’s tightness criterion. Part (a) is made possible by a linearization trick and the univariate second-order Poincaré inequality, while part (b) follows from a standard moment estimate with an application of Rosenthal’s inequality.References
- Obayda Assaad, David Nualart, Ciprian A. Tudor, and Lauri Viitasaari, Quantitative normal approximations for the stochastic fractional heat equation, Stoch. Partial Differ. Equ. Anal. Comput. 10 (2022), no. 1, 223–254. MR 4385408, DOI 10.1007/s40072-021-00198-7
- Raluca M. Balan, SPDEs with $\alpha$-stable Lévy noise: a random field approach, Int. J. Stoch. Anal. , posted on (2014), Art. ID 793275, 22. MR 3166748, DOI 10.1155/2014/793275
- Raluca M. Balan, Integration with respect to Lévy colored noise, with applications to SPDEs, Stochastics 87 (2015), no. 3, 363–381. MR 3339302, DOI 10.1080/17442508.2014.956103
- Raluca Balan, Stochastic wave equation with Lévy white noise, ALEA Lat. Am. J. Probab. Math. Stat. 20 (2023), no. 1, 463–496. MR 4567717, DOI 10.30757/alea.v20-16
- Raluca M. Balan and Cheikh B. Ndongo, Intermittency for the wave equation with Lévy white noise, Statist. Probab. Lett. 109 (2016), 214–223. MR 3434981, DOI 10.1016/j.spl.2015.09.027
- Raluca M. Balan and Cheikh B. Ndongo, Malliavin differentiability of solutions of SPDEs with Lévy white noise, Int. J. Stoch. Anal. , posted on (2017), Art. ID 9693153, 9. MR 3628131, DOI 10.1155/2017/9693153
- Raluca M. Balan, David Nualart, Lluís Quer-Sardanyons, and Guangqu Zheng, The hyperbolic Anderson model: moment estimates of the Malliavin derivatives and applications, Stoch. Partial Differ. Equ. Anal. Comput. 10 (2022), no. 3, 757–827. MR 4491503, DOI 10.1007/s40072-021-00227-5
- Quentin Berger, Carsten Chong, and Hubert Lacoin, The stochastic heat equation with multiplicative Lévy noise: existence, moments, and intermittency, Comm. Math. Phys. 402 (2023), no. 3, 2215–2299. MR 4630474, DOI 10.1007/s00220-023-04768-9
- Raul Bolaños Guerrero, David Nualart, and Guangqu Zheng, Averaging 2d stochastic wave equation, Electron. J. Probab. 26 (2021), Paper No. 102, 32. MR 4290504, DOI 10.1214/21-ejp672
- Sourav Chatterjee, Fluctuations of eigenvalues and second order Poincaré inequalities, Probab. Theory Related Fields 143 (2009), no. 1-2, 1–40. MR 2449121, DOI 10.1007/s00440-007-0118-6
- L. Chen, Y. Guo, and J. Song, Moments and asymptotics for a class of SPDEs with space-time white noise, Trans. Amer. Math. Soc., To appear, arXiv:2206.10069v1 [math.PR].
- Le Chen, Davar Khoshnevisan, David Nualart, and Fei Pu, Spatial ergodicity for SPDEs via Poincaré-type inequalities, Electron. J. Probab. 26 (2021), Paper No. 140, 37. MR 4346664, DOI 10.1214/21-ejp690
- Le Chen, Davar Khoshnevisan, David Nualart, and Fei Pu, Central limit theorems for parabolic stochastic partial differential equations, Ann. Inst. Henri Poincaré Probab. Stat. 58 (2022), no. 2, 1052–1077 (English, with English and French summaries). MR 4421618, DOI 10.1214/21-aihp1189
- Le Chen, Davar Khoshnevisan, David Nualart, and Fei Pu, Spatial ergodicity and central limit theorems for parabolic Anderson model with delta initial condition, J. Funct. Anal. 282 (2022), no. 2, Paper No. 109290, 35. MR 4334682, DOI 10.1016/j.jfa.2021.109290
- Carsten Chong, Stochastic PDEs with heavy-tailed noise, Stochastic Process. Appl. 127 (2017), no. 7, 2262–2280. MR 3652413, DOI 10.1016/j.spa.2016.10.011
- Carsten Chong, Robert C. Dalang, and Thomas Humeau, Path properties of the solution to the stochastic heat equation with Lévy noise, Stoch. Partial Differ. Equ. Anal. Comput. 7 (2019), no. 1, 123–168. MR 3916265, DOI 10.1007/s40072-018-0124-y
- Carsten Chong and Péter Kevei, Intermittency for the stochastic heat equation with Lévy noise, Ann. Probab. 47 (2019), no. 4, 1911–1948. MR 3980911, DOI 10.1214/18-AOP1297
- Carsten Chong and Péter Kevei, Extremes of the stochastic heat equation with additive Lévy noise, Electron. J. Probab. 27 (2022), Paper No. 128, 21. MR 4490411, DOI 10.1214/22-ejp855
- Giuseppe Da Prato and Jerzy Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992. MR 1207136, DOI 10.1017/CBO9780511666223
- Robert C. Dalang, Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.’s, Electron. J. Probab. 4 (1999), no. 6, 29. MR 1684157, DOI 10.1214/EJP.v4-43
- Robert C. Dalang and Lluís Quer-Sardanyons, Stochastic integrals for spde’s: a comparison, Expo. Math. 29 (2011), no. 1, 67–109. MR 2785545, DOI 10.1016/j.exmath.2010.09.005
- Francisco Delgado-Vences, David Nualart, and Guangqu Zheng, A central limit theorem for the stochastic wave equation with fractional noise, Ann. Inst. Henri Poincaré Probab. Stat. 56 (2020), no. 4, 3020–3042 (English, with English and French summaries). MR 4164864, DOI 10.1214/20-AIHP1069
- Rémi Dhoyer and Ciprian A. Tudor, Spatial average for the solution to the heat equation with Rosenblatt noise, Stoch. Anal. Appl. 40 (2022), no. 6, 951–966. MR 4500121, DOI 10.1080/07362994.2021.1972008
- Christian Döbler and Giovanni Peccati, The fourth moment theorem on the Poisson space, Ann. Probab. 46 (2018), no. 4, 1878–1916. MR 3813981, DOI 10.1214/17-AOP1215
- Christian Döbler and Giovanni Peccati, Fourth moment theorems on the Poisson space: analytic statements via product formulae, Electron. Commun. Probab. 23 (2018), Paper No. 91, 12. MR 3896829, DOI 10.1214/18-ECP196
- Christian Döbler, Anna Vidotto, and Guangqu Zheng, Fourth moment theorems on the Poisson space in any dimension, Electron. J. Probab. 23 (2018), Paper No. 36, 27. MR 3798246, DOI 10.1214/18-EJP168
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 58896
- Jingyu Huang, David Nualart, and Lauri Viitasaari, A central limit theorem for the stochastic heat equation, Stochastic Process. Appl. 130 (2020), no. 12, 7170–7184. MR 4167203, DOI 10.1016/j.spa.2020.07.010
- Jingyu Huang, David Nualart, Lauri Viitasaari, and Guangqu Zheng, Gaussian fluctuations for the stochastic heat equation with colored noise, Stoch. Partial Differ. Equ. Anal. Comput. 8 (2020), no. 2, 402–421. MR 4098872, DOI 10.1007/s40072-019-00149-3
- Kiyosi Itô, Spectral type of the shift transformation of differential processes with stationary increments, Trans. Amer. Math. Soc. 81 (1956), 253–263. MR 77017, DOI 10.1090/S0002-9947-1956-0077017-0
- Ju. M. Kabanov, Extended stochastic integrals, Teor. Verojatnost. i Primenen. 20 (1975), no. 4, 725–737 (Russian, with English summary). MR 397877
- Olav Kallenberg, Foundations of modern probability, Probability Theory and Stochastic Modelling, vol. 99, Springer, Cham, [2021] ©2021. Third edition [of 1464694]. MR 4226142, DOI 10.1007/978-3-030-61871-1
- Robert Dalang, Davar Khoshnevisan, Carl Mueller, David Nualart, and Yimin Xiao, A minicourse on stochastic partial differential equations, Lecture Notes in Mathematics, vol. 1962, Springer-Verlag, Berlin, 2009. Held at the University of Utah, Salt Lake City, UT, May 8–19, 2006; Edited by Khoshnevisan and Firas Rassoul-Agha. MR 1500166
- Piotr Garbaczewski and John R. Klauder, Schrödinger problem, Lévy processes, and noise in relativistic quantum mechanics, Phys. Rev. E (3) 51 (1995), no. 5, 4114–4131. MR 1385892, DOI 10.1103/PhysRevE.51.4114
- N. V. Krylov and B. L. Rozovskiĭ, Stochastic evolution equations, Current problems in mathematics, Vol. 14 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1979, pp. 71–147, 256 (Russian). MR 570795
- Günter Last, Stochastic analysis for Poisson processes, Stochastic analysis for Poisson point processes, Bocconi Springer Ser., vol. 7, Bocconi Univ. Press, [place of publication not identified], 2016, pp. 1–36. MR 3585396, DOI 10.1007/978-3-319-05233-5_{1}
- G. Last, I. Molchanov, and M. Schulte, Normal approximation of Kabanov-Skorohod integrals on Poisson spaces, J. Theor. Probab. (2023), DOI 10.1007/s10959-023-01287-0.
- Günter Last, Giovanni Peccati, and Matthias Schulte, Normal approximation on Poisson spaces: Mehler’s formula, second order Poincaré inequalities and stabilization, Probab. Theory Related Fields 165 (2016), no. 3-4, 667–723. MR 3520016, DOI 10.1007/s00440-015-0643-7
- Günter Last and Mathew Penrose, Lectures on the Poisson process, Institute of Mathematical Statistics Textbooks, vol. 7, Cambridge University Press, Cambridge, 2018. MR 3791470
- Zenghu Li and Fei Pu, Gaussian fluctuation for spatial average of super-Brownian motion, Stoch. Anal. Appl. 41 (2023), no. 4, 752–769. MR 4601713, DOI 10.1080/07362994.2022.2079530
- Carl Mueller, The heat equation with Lévy noise, Stochastic Process. Appl. 74 (1998), no. 1, 67–82. MR 1624088, DOI 10.1016/S0304-4149(97)00120-8
- Carl Mueller, Leonid Mytnik, and Aurel Stan, The heat equation with time-independent multiplicative stable Lévy noise, Stochastic Process. Appl. 116 (2006), no. 1, 70–100. MR 2186840, DOI 10.1016/j.spa.2005.08.001
- Leonid Mytnik, Stochastic partial differential equation driven by stable noise, Probab. Theory Related Fields 123 (2002), no. 2, 157–201. MR 1900321, DOI 10.1007/s004400100180
- Ivan Nourdin and Giovanni Peccati, Normal approximations with Malliavin calculus, Cambridge Tracts in Mathematics, vol. 192, Cambridge University Press, Cambridge, 2012. From Stein’s method to universality. MR 2962301, DOI 10.1017/CBO9781139084659
- Ivan Nourdin, Giovanni Peccati, and Gesine Reinert, Second order Poincaré inequalities and CLTs on Wiener space, J. Funct. Anal. 257 (2009), no. 2, 593–609. MR 2527030, DOI 10.1016/j.jfa.2008.12.017
- Ivan Nourdin, Giovanni Peccati, and Xiaochuan Yang, Restricted hypercontractivity on the Poisson space, Proc. Amer. Math. Soc. 148 (2020), no. 8, 3617–3632. MR 4108865, DOI 10.1090/proc/14964
- David Nualart, The Malliavin calculus and related topics, 2nd ed., Probability and its Applications (New York), Springer-Verlag, Berlin, 2006. MR 2200233
- David Nualart and Eulalia Nualart, Introduction to Malliavin calculus, Institute of Mathematical Statistics Textbooks, vol. 9, Cambridge University Press, Cambridge, 2018. MR 3838464, DOI 10.1017/9781139856485
- David Nualart, Xiaoming Song, and Guangqu Zheng, Spatial averages for the parabolic Anderson model driven by rough noise, ALEA Lat. Am. J. Probab. Math. Stat. 18 (2021), no. 1, 907–943. MR 4243520, DOI 10.30757/alea.v18-33
- David Nualart, Panqiu Xia, and Guangqu Zheng, Quantitative central limit theorems for the parabolic Anderson model driven by colored noises, Electron. J. Probab. 27 (2022), Paper No. 120, 43. MR 4479916, DOI 10.1214/22-ejp847
- David Nualart and Guangqu Zheng, Averaging Gaussian functionals, Electron. J. Probab. 25 (2020), Paper No. 48, 54. MR 4092767, DOI 10.1214/20-ejp453
- David Nualart and Guangqu Zheng, Spatial ergodicity of stochastic wave equations in dimensions 1, 2 and 3, Electron. Commun. Probab. 25 (2020), Paper No. 80, 11. MR 4187721, DOI 10.1214/20-ecp361
- David Nualart and Guangqu Zheng, Central limit theorems for stochastic wave equations in dimensions one and two, Stoch. Partial Differ. Equ. Anal. Comput. 10 (2022), no. 2, 392–418. MR 4439987, DOI 10.1007/s40072-021-00209-7
- E. Pardoux, Équations aux dérivées partielles stochastiques de type monotone, Séminaire sur les Équations aux Dérivées Partielles (1974–1975), III, Collège de France, Paris, 1975, pp. Exp. No. 2, 10 (French). MR 651582
- G. Peccati, J. L. Solé, M. S. Taqqu, and F. Utzet, Stein’s method and normal approximation of Poisson functionals, Ann. Probab. 38 (2010), no. 2, 443–478. MR 2642882, DOI 10.1214/09-AOP477
- Giovanni Peccati and Christoph Thäle, Gamma limits and $U$-statistics on the Poisson space, ALEA Lat. Am. J. Probab. Math. Stat. 10 (2013), no. 1, 525–560. MR 3083936
- S. Peszat and J. Zabczyk, Stochastic partial differential equations with Lévy noise, Encyclopedia of Mathematics and its Applications, vol. 113, Cambridge University Press, Cambridge, 2007. An evolution equation approach. MR 2356959, DOI 10.1017/CBO9780511721373
- Karl Petersen, Ergodic theory, Cambridge Studies in Advanced Mathematics, vol. 2, Cambridge University Press, Cambridge, 1989. Corrected reprint of the 1983 original. MR 1073173
- Claudia Prévôt and Michael Röckner, A concise course on stochastic partial differential equations, Lecture Notes in Mathematics, vol. 1905, Springer, Berlin, 2007. MR 2329435
- Fei Pu, Gaussian fluctuation for spatial average of parabolic Anderson model with Neumann/Dirichlet/periodic boundary conditions, Trans. Amer. Math. Soc. 375 (2022), no. 4, 2481–2509. MR 4391725, DOI 10.1090/tran/8565
- Nathan Ross, Fundamentals of Stein’s method, Probab. Surv. 8 (2011), 210–293. MR 2861132, DOI 10.1214/11-PS182
- Boris L. Rozovsky and Sergey V. Lototsky, Stochastic evolution systems, Probability Theory and Stochastic Modelling, vol. 89, Springer, Cham, 2018. Linear theory and applications to non-linear filtering; Second edition of [ MR1135324]. MR 3839316, DOI 10.1007/978-3-319-94893-5
- Ken-iti Sato, Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 2013. Translated from the 1990 Japanese original; Revised edition of the 1999 English translation. MR 3185174
- Matthias Schulte and J. E. Yukich, Multivariate second order Poincaré inequalities for Poisson functionals, Electron. J. Probab. 24 (2019), Paper No. 130, 42. MR 4040990, DOI 10.1214/19-ejp386
- D. Surgailis, On multiple Poisson stochastic integrals and associated Markov semigroups, Probab. Math. Statist. 3 (1984), no. 2, 217–239. MR 764148
- T. Trauthwein, Quantitative CLTs on the Poisson space via Skorohod estimates and $p$-Poincaré inequalities, arXiv:2212.03782 [math.PR].
- Anna Vidotto, An improved second-order Poincaré inequality for functionals of Gaussian fields, J. Theoret. Probab. 33 (2020), no. 1, 396–427. MR 4064306, DOI 10.1007/s10959-019-00883-3
- John B. Walsh, An introduction to stochastic partial differential equations, École d’été de probabilités de Saint-Flour, XIV—1984, Lecture Notes in Math., vol. 1180, Springer, Berlin, 1986, pp. 265–439. MR 876085, DOI 10.1007/BFb0074920
Bibliographic Information
- Raluca M. Balan
- Affiliation: Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- MR Author ID: 681352
- ORCID: 0000-0003-3335-2152
- Email: Raluca.Balan@uottawa.ca
- Guangqu Zheng
- Affiliation: Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, United Kingdom
- MR Author ID: 1205047
- Email: Guangqu.Zheng@liverpool.ac.uk
- Received by editor(s): May 15, 2023
- Received by editor(s) in revised form: January 15, 2024
- Published electronically: February 29, 2024
- Additional Notes: The first author was supported by a grant from the Natural Sciences and Engineering Research Council of Canada.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 4171-4221
- MSC (2020): Primary 60H15; Secondary 60H07, 60F05, 60G51
- DOI: https://doi.org/10.1090/tran/9135
- MathSciNet review: 4748618
Dedicated: This paper is dedicated to Professor David Nualart on the occasion of his retirement