New tensor products of C*-algebras and characterization of type I C*-algebras as rigidly symmetric C*-algebras
HTML articles powered by AMS MathViewer
- by Hun Hee Lee, Ebrahim Samei and Matthew Wiersma;
- Trans. Amer. Math. Soc. 377 (2024), 4223-4253
- DOI: https://doi.org/10.1090/tran/9139
- Published electronically: April 3, 2024
- HTML | PDF | Request permission
Abstract:
Inspired by recent developments in the theory of Banach and operator algebras of locally compact groups, we construct several new classes of bifunctors $(A,B)\mapsto A\otimes _{\alpha } B$, where $A\otimes _\alpha B$ is a cross norm completion of $A\odot B$ for each pair of C*-algebras $A$ and $B$. For the first class of bifunctors considered $(A,B)\mapsto A{\otimes _p} B$ ($1\leq p\leq \infty$), $A{\otimes _p} B$ is a Banach algebra cross-norm completion of $A\odot B$ constructed in a fashion similar to $p$-pseudofunctions $\text {PF}^*_p(G)$ of a locally compact group. Taking a cue from the recently introduced symmetrized $p$-pseudofunctions due to Liao and Yu and later by the second and the third named authors, we also consider ${\otimes _{p,q}}$ for Hölder conjugate $p,q\in [1,\infty ]$ – a Banach $*$-algebra analogue of the tensor product ${\otimes _{p,q}}$. By taking enveloping C*-algebras of $A{\otimes _{p,q}} B$, we arrive at a third bifunctor $(A,B)\mapsto A{\otimes _{\mathrm C^*_{p,q}}} B$ where the resulting algebra $A{\otimes _{\mathrm C^*_{p,q}}} B$ is a C*-algebra.
For $G_1$ and $G_2$ belonging to a large class of discrete groups, we show that the tensor products $\mathrm C^*_{\mathrm r}(G_1){\otimes _{\mathrm C^*_{p,q}}}\mathrm C^*_{\mathrm r}(G_2)$ coincide with a Brown-Guentner type C*-completion of $\mathrm \ell ^1(G_1\times G_2)$ and conclude that if $2\leq p’<p\leq \infty$, then the canonical quotient map $\mathrm C^*_{\mathrm r}(G){\otimes _{\mathrm C^*_{p,q}}}\mathrm C^*_{\mathrm r}(G)\to \mathrm C^*_{\mathrm r}(G){\otimes _{\mathrm C^*_{p,q}}}\mathrm C^*_{\mathrm r}(G)$ is not injective for a large class of non-amenable discrete groups possessing both the rapid decay property and Haagerup’s approximation property.
A Banach $*$-algebra $A$ is symmetric if the spectrum $\mathrm {Sp}_A(a^*a)$ is contained in $[0,\infty )$ for every $a\in A$, and rigidly symmetric if $A\otimes _{\gamma } B$ is symmetric for every C*-algebra $B$. A theorem of Kügler asserts that every type I C*-algebra is rigidly symmetric. Leveraging our new constructions, we establish the converse of Kügler’s theorem by showing for C*-algebras $A$ and $B$ that $A\otimes _{\gamma }B$ is symmetric if and only if $A$ or $B$ is type I. In particular, a C*-algebra is rigidly symmetric if and only if it is type I. This strongly settles a question of Leptin and Poguntke from 1979 [J. Functional Analysis 33 (1979), pp. 119—134] and corrects an error in the literature.
References
- Bruce A. Barnes, When is the spectrum of a convolution operator on $L^p$ independent of $p$?, Proc. Edinburgh Math. Soc. (2) 33 (1990), no. 2, 327–332. MR 1057760, DOI 10.1017/S0013091500018241
- Bruce Blackadar, Nonnuclear subalgebras of $C^\ast$-algebras, J. Operator Theory 14 (1985), no. 2, 347–350. MR 808296
- B. Blackadar and J. Cuntz, Differential Banach algebra norms and smooth subalgebras of $C^*$-algebras, J. Operator Theory 26 (1991), no. 2, 255–282. MR 1225517
- David P. Blecher and N. Christopher Phillips, $L^p$-operator algebras with approximate identities, I, Pacific J. Math. 303 (2019), no. 2, 401–457. MR 4059950, DOI 10.2140/pjm.2019.303.401
- David P. Blecher and Roger R. Smith, The dual of the Haagerup tensor product, J. London Math. Soc. (2) 45 (1992), no. 1, 126–144. MR 1157556, DOI 10.1112/jlms/s2-45.1.126
- Frank F. Bonsall and John Duncan, Complete normed algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 80, Springer-Verlag, New York-Heidelberg, 1973. MR 423029, DOI 10.1007/978-3-642-65669-9
- Marek Bożejko and Gero Fendler, Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Un. Mat. Ital. A (6) 3 (1984), no. 2, 297–302 (English, with Italian summary). MR 753889
- Michael Brannan and Zhong-Jin Ruan, $L_p$-representations of discrete quantum groups, J. Reine Angew. Math. 732 (2017), 165–210. MR 3717091, DOI 10.1515/crelle-2014-0140
- Nathanial P. Brown and Erik P. Guentner, New $\rm C^\ast$-completions of discrete groups and related spaces, Bull. Lond. Math. Soc. 45 (2013), no. 6, 1181–1193. MR 3138486, DOI 10.1112/blms/bdt044
- Nathanial P. Brown and Narutaka Ozawa, $C^*$-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Providence, RI, 2008. MR 2391387, DOI 10.1090/gsm/088
- Alcides Buss, Siegfried Echterhoff, and Rufus Willett, Exotic crossed products, Operator algebras and applications—the Abel Symposium 2015, Abel Symp., vol. 12, Springer, [Cham], 2017, pp. 67–114. MR 3837592
- Alcides Buss, Siegfried Echterhoff, and Rufus Willett, Exotic crossed products and the Baum-Connes conjecture, J. Reine Angew. Math. 740 (2018), 111–159. MR 3824785, DOI 10.1515/crelle-2015-0061
- A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190. MR 167830, DOI 10.4064/sm-24-2-113-190
- Indira Chatterji, Introduction to the rapid decay property, Around Langlands correspondences, Contemp. Math., vol. 691, Amer. Math. Soc., Providence, RI, 2017, pp. 53–72. MR 3666050, DOI 10.1090/conm/691/13893
- Y. Choi, A twisted inclusion between tensor products of operator spaces, Unpublished manuscript, arXiv:1606.06287v2.
- M. Cowling, U. Haagerup, and R. Howe, Almost $L^2$ matrix coefficients, J. Reine Angew. Math. 387 (1988), 97–110. MR 946351
- Tim de Laat and Timo Siebenand, Exotic group $C^*$-algebras of simple Lie groups with real rank one, Ann. Inst. Fourier (Grenoble) 71 (2021), no. 5, 2117–2136 (English, with English and French summaries). MR 4398257, DOI 10.5802/aif.3441
- Edward G. Effros and E. Christopher Lance, Tensor products of operator algebras, Adv. Math. 25 (1977), no. 1, 1–34. MR 448092, DOI 10.1016/0001-8708(77)90085-8
- Edward G. Effros and Zhong-Jin Ruan, Operator spaces, London Mathematical Society Monographs. New Series, vol. 23, The Clarendon Press, Oxford University Press, New York, 2000. MR 1793753
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628, DOI 10.24033/bsmf.1607
- Gero Fendler, Karlheinz Gröchenig, and Michael Leinert, Convolution-dominated operators on discrete groups, Integral Equations Operator Theory 61 (2008), no. 4, 493–509. MR 2434338, DOI 10.1007/s00020-008-1604-7
- Gero Fendler, Karlheinz Gröchenig, and Michael Leinert, Convolution-dominated integral operators, Noncommutative harmonic analysis with applications to probability II, Banach Center Publ., vol. 89, Polish Acad. Sci. Inst. Math., Warsaw, 2010, pp. 121–127. MR 2730873, DOI 10.4064/bc89-0-6
- Gero Fendler and Michael Leinert, Convolution dominated operators on compact extensions of abelian groups, Adv. Oper. Theory 4 (2019), no. 1, 99–112. MR 3867336, DOI 10.15352/aot.1712-1275
- Eusebio Gardella, A modern look at algebras of operators on $L^p$-spaces, Expo. Math. 39 (2021), no. 3, 420–453. MR 4314026, DOI 10.1016/j.exmath.2020.10.003
- Eusebio Gardella and Hannes Thiel, Group algebras acting on $L^p$-spaces, J. Fourier Anal. Appl. 21 (2015), no. 6, 1310–1343. MR 3421918, DOI 10.1007/s00041-015-9406-1
- Karlheinz Gröchenig and Michael Leinert, Wiener’s lemma for twisted convolution and Gabor frames, J. Amer. Math. Soc. 17 (2004), no. 1, 1–18. MR 2015328, DOI 10.1090/S0894-0347-03-00444-2
- Karlheinz Gröchenig and Andreas Klotz, Norm-controlled inversion in smooth Banach algebras, I, J. Lond. Math. Soc. (2) 88 (2013), no. 1, 49–64. MR 3092257, DOI 10.1112/jlms/jdt004
- Karlheinz Gröchenig and Andreas Klotz, Norm-controlled inversion in smooth Banach algebras, II, Math. Nachr. 287 (2014), no. 8-9, 917–937. MR 3219221, DOI 10.1002/mana.201200312
- Paul Jolissaint, Rapidly decreasing functions in reduced $C^*$-algebras of groups, Trans. Amer. Math. Soc. 317 (1990), no. 1, 167–196. MR 943303, DOI 10.1090/S0002-9947-1990-0943303-2
- Horst Leptin, Symmetrie in Banachschen Algebren, Arch. Math. (Basel) 27 (1976), no. 4, 394–400 (German). MR 417793, DOI 10.1007/BF01224692
- S. Kaliszewski, Magnus B. Landstad, and John Quigg, Exotic group $C^*$-algebras in noncommutative duality, New York J. Math. 19 (2013), 689–711. MR 3141810
- S. Kaliszewski, Magnus B. Landstad, and John Quigg, Ordered invariant ideals of Fourier-Stieltjes algebras, New York J. Math. 24 (2018), 1039–1055. MR 3874962
- Eberhard Kaniuth and Anthony To-Ming Lau, Fourier and Fourier-Stieltjes algebras on locally compact groups, Mathematical Surveys and Monographs, vol. 231, American Mathematical Society, Providence, RI, 2018. MR 3821506, DOI 10.1090/surv/231
- Werner Kugler, On the symmetry of generalized $L^{1}$-algebras, Math. Z. 168 (1979), no. 3, 241–262. MR 544593, DOI 10.1007/BF01214515
- Ajay Kumar and Vandana Rajpal, Symmetry and quasi-centrality of the operator space projective tensor product, Arch. Math. (Basel) 99 (2012), no. 6, 519–529. MR 3001555, DOI 10.1007/s00013-012-0462-3
- Horst Leptin and Detlev Poguntke, Symmetry and nonsymmetry for locally compact groups, J. Functional Analysis 33 (1979), no. 2, 119–134. MR 546502, DOI 10.1016/0022-1236(79)90107-1
- B. Liao and G. Yu, K-theory of group Banach algebras and Banach property RD, Preprint, arXiv:1708.01982v2.
- Rui Okayasu, Free group $C^*$-algebras associated with $\ell _p$, Internat. J. Math. 25 (2014), no. 7, 1450065, 12. MR 3238088, DOI 10.1142/S0129167X14500657
- Narutaka Ozawa and Gilles Pisier, A continuum of $\rm C^*$-norms on $\Bbb {B}(H)\otimes \Bbb {B}(H)$ and related tensor products, Glasg. Math. J. 58 (2016), no. 2, 433–443. MR 3483590, DOI 10.1017/S0017089515000257
- Rui Palma, On the growth of Hermitian groups, Groups Geom. Dyn. 9 (2015), no. 1, 29–53. MR 3343345, DOI 10.4171/GGD/304
- Theodore W. Palmer, Banach algebras and the general theory of $*$-algebras. Vol. 2, Encyclopedia of Mathematics and its Applications, vol. 79, Cambridge University Press, Cambridge, 2001. $*$-algebras. MR 1819503, DOI 10.1017/CBO9780511574757.003
- Gilles Pisier, Introduction to operator space theory, London Mathematical Society Lecture Note Series, vol. 294, Cambridge University Press, Cambridge, 2003. MR 2006539, DOI 10.1017/CBO9781107360235
- Detlev Poguntke, Rigidly symmetric $L^1$-group algebras, Sem. Sophus Lie 2 (1992), no. 2, 189–197. MR 1209136
- Shirin Hejazian and Sanaz Pooya, Simple reduced $L^p$-operator crossed products with unique trace, J. Operator Theory 74 (2015), no. 1, 133–147. MR 3383617, DOI 10.7900/jot.2014may13.2036
- A. Rennie, Spectral triples: examples and applications, Unpublished lecture notes, http://www.tuhep.phys.tohoku.ac.jp/NCG-P/workshop2009/Japan-feb-09.pdf.
- Zhong-Jin Ruan and Matthew Wiersma, On exotic group $\rm C^*$-algebras, J. Funct. Anal. 271 (2016), no. 2, 437–453. MR 3501853, DOI 10.1016/j.jfa.2016.03.002
- Ebrahim Samei and Matthew Wiersma, Exotic $\rm C^*$-algebras of geometric groups, J. Funct. Anal. 286 (2024), no. 2, Paper No. 110228, 32. MR 4664988, DOI 10.1016/j.jfa.2023.110228
- Ebrahim Samei and Matthew Wiersma, Quasi-Hermitian locally compact groups are amenable, Adv. Math. 359 (2020), 106897, 25. MR 4031113, DOI 10.1016/j.aim.2019.106897
- Elmar Thoma, Über unitäre Darstellungen abzählbarer, diskreter Gruppen, Math. Ann. 153 (1964), 111–138 (German). MR 160118, DOI 10.1007/BF01361180
- Matthew Wiersma, $C^*$-norms for tensor products of discrete group $C^*$-algebras, Bull. Lond. Math. Soc. 47 (2015), no. 2, 219–224. MR 3335116, DOI 10.1112/blms/bdu115
- Matthew Wiersma, Constructions of exotic group $C^*$-algebras, Illinois J. Math. 60 (2016), no. 3-4, 655–667. MR 3705441
- Matthew Wiersma, $L^p$-Fourier and Fourier-Stieltjes algebras for locally compact groups, J. Funct. Anal. 269 (2015), no. 12, 3928–3951. MR 3418075, DOI 10.1016/j.jfa.2015.09.016
Bibliographic Information
- Hun Hee Lee
- Affiliation: Department of Mathematical Sciences, Seoul National University, San56-1 Shinrim-dong Kwanak-gu, Seoul 151-747, Republic of Korea
- MR Author ID: 734722
- Email: hunheelee@snu.ac.kr
- Ebrahim Samei
- Affiliation: Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E6, Canada
- MR Author ID: 742821
- Email: samei@math.usask.ca
- Matthew Wiersma
- Affiliation: Department of Mathematics and Statistics, University of Winnipeg, 515 Portage Avenue, Winnipeg, Manitoba R3B 2E9, Canada
- MR Author ID: 996733
- Email: m.wiersma@uwinnipeg.ca
- Received by editor(s): January 17, 2023
- Received by editor(s) in revised form: November 17, 2023, and January 17, 2024
- Published electronically: April 3, 2024
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 4223-4253
- MSC (2020): Primary 43A20, 43A15, 46L05, 47B10
- DOI: https://doi.org/10.1090/tran/9139
- MathSciNet review: 4748619