Symmetric function generalizations of the $q$-Baker–Forrester ex-conjecture and Selberg-type integrals
HTML articles powered by AMS MathViewer
- by Guoce Xin and Yue Zhou;
- Trans. Amer. Math. Soc. 377 (2024), 4303-4363
- DOI: https://doi.org/10.1090/tran/9142
- Published electronically: April 9, 2024
- HTML | PDF | Request permission
Abstract:
It is well-known that the famous Selberg integral is equivalent to the Morris constant term identity. In 1998, Baker and Forrester conjectured a generalization of the $q$-Morris constant term identity[J. Combin. Theory Ser. A 81 (1998), pp. 69–87]. This conjecture was proved and extended by Károlyi, Nagy, Petrov, and Volkov (KNPV) in 2015 [Adv. Math. 277 (2015), pp. 252–282]. In this paper, we obtain two symmetric function generalizations of the $q$-Baker–Forrester ex-conjecture. These include: (i) a $q$-Baker–Forrester type constant term identity for a product of a complete symmetric function and a Macdonald polynomial; (ii) a complete symmetric function generalization of KNPV’s result.References
- Vasyl A. Alba, Vladimir A. Fateev, Alexey V. Litvinov, and Grigory M. Tarnopolskiy, On combinatorial expansion of the conformal blocks arising from AGT conjecture, Lett. Math. Phys. 98 (2011), no. 1, 33–64. MR 2836428, DOI 10.1007/s11005-011-0503-z
- Seamus P. Albion, Eric M. Rains, and S. Ole Warnaar, AFLT-type Selberg integrals, Comm. Math. Phys. 388 (2021), no. 2, 735–791. MR 4334246, DOI 10.1007/s00220-021-04157-0
- Richard Askey, Some basic hypergeometric extensions of integrals of Selberg and Andrews, SIAM J. Math. Anal. 11 (1980), no. 6, 938–951. MR 595822, DOI 10.1137/0511084
- T. H. Baker and P. J. Forrester, Generalizations of the $q$-Morris constant term identity, J. Combin. Theory Ser. A 81 (1998), no. 1, 69–87. MR 1492869, DOI 10.1006/jcta.1997.2819
- Tommy Wuxing Cai, Macdonald symmetric functions of rectangular shapes, J. Combin. Theory Ser. A 128 (2014), 162–179. MR 3265922, DOI 10.1016/j.jcta.2014.08.005
- Peter J. Forrester and S. Ole Warnaar, The importance of the Selberg integral, Bull. Amer. Math. Soc. (N.S.) 45 (2008), no. 4, 489–534. MR 2434345, DOI 10.1090/S0273-0979-08-01221-4
- George Gasper and Mizan Rahman, Basic hypergeometric series, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 96, Cambridge University Press, Cambridge, 2004. With a foreword by Richard Askey. MR 2128719, DOI 10.1017/CBO9780511526251
- Ira M. Gessel, Lun Lv, Guoce Xin, and Yue Zhou, A unified elementary approach to the Dyson, Morris, Aomoto, and Forrester constant term identities, J. Combin. Theory Ser. A 115 (2008), no. 8, 1417–1435. MR 2455586, DOI 10.1016/j.jcta.2008.02.006
- Ira M. Gessel and Guoce Xin, A short proof of the Zeilberger-Bressoud $q$-Dyson theorem, Proc. Amer. Math. Soc. 134 (2006), no. 8, 2179–2187. MR 2213689, DOI 10.1090/S0002-9939-06-08224-4
- Laurent Habsieger, Une $q$-intégrale de Selberg et Askey, SIAM J. Math. Anal. 19 (1988), no. 6, 1475–1489 (French, with English summary). MR 965268, DOI 10.1137/0519111
- James Haglund, The $q$,$t$-Catalan numbers and the space of diagonal harmonics, University Lecture Series, vol. 41, American Mathematical Society, Providence, RI, 2008. With an appendix on the combinatorics of Macdonald polynomials. MR 2371044, DOI 10.1007/s10711-008-9270-0
- Kevin W. J. Kadell, A proof of Askey’s conjectured $q$-analogue of Selberg’s integral and a conjecture of Morris, SIAM J. Math. Anal. 19 (1988), no. 4, 969–986. MR 946655, DOI 10.1137/0519067
- Kevin W. J. Kadell, The Selberg-Jack symmetric functions, Adv. Math. 130 (1997), no. 1, 33–102. MR 1467311, DOI 10.1006/aima.1997.1642
- Gyula Károlyi, Zoltán Lóránt Nagy, Fedor V. Petrov, and Vladislav Volkov, A new approach to constant term identities and Selberg-type integrals, Adv. Math. 277 (2015), 252–282. MR 3336087, DOI 10.1016/j.aim.2014.09.028
- Alain Lascoux, Symmetric functions and combinatorial operators on polynomials, CBMS Regional Conference Series in Mathematics, vol. 99, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2003. MR 2017492, DOI 10.1090/cbms/099
- Michel Lassalle, A short proof of generalized Jacobi-Trudi expansions for Macdonald polynomials, Jack, Hall-Littlewood and Macdonald polynomials, Contemp. Math., vol. 417, Amer. Math. Soc., Providence, RI, 2006, pp. 271–280. MR 2284133, DOI 10.1090/conm/417/07927
- Lun Lv, Guoce Xin, and Yue Zhou, A family of $q$-Dyson style constant term identities, J. Combin. Theory Ser. A 116 (2009), no. 1, 12–29. MR 2469245, DOI 10.1016/j.jcta.2008.04.002
- I. G. Macdonald, A new class of symmetric functions, Actes du 20e Séminaire Lotharingien, vol. 372/S-20, Publications I.R.M.A., Strasbourg, 1988, pp. 131–171.
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144, DOI 10.1093/oso/9780198534891.001.0001
- Walter Garfield Morris II, CONSTANT TERM IDENTITIES FOR FINITE AND AFFINE ROOT SYSTEMS: CONJECTURES AND THEOREMS, ProQuest LLC, Ann Arbor, MI, 1982. Thesis (Ph.D.)–The University of Wisconsin - Madison. MR 2631899
- Eric Rains and S. Ole Warnaar, Bounded Littlewood identities, Mem. Amer. Math. Soc. 270 (2021), no. 1317, vii+115. MR 4259867, DOI 10.1090/memo/1317
- A. Selberg, Bemerkninger om et multipelt integral, Norsk Mat. Tidsskr. 26 (1944), 71–78.
- John R. Stembridge, First layer formulas for characters of $\textrm {SL}(n,\textbf {C})$, Trans. Amer. Math. Soc. 299 (1987), no. 1, 319–350. MR 869415, DOI 10.1090/S0002-9947-1987-0869415-X
- S. Ole Warnaar, $q$-Selberg integrals and Macdonald polynomials, Ramanujan J. 10 (2005), no. 2, 237–268. MR 2195565, DOI 10.1007/s11139-005-4849-7
- Guoce Xin, The ring of Malcev-Neumann series and the residue theorem, ProQuest LLC, Ann Arbor, MI, 2004. Thesis (Ph.D.)–Brandeis University. MR 2705745
- Guoce Xin, A fast algorithm for MacMahon’s partition analysis, Electron. J. Combin. 11 (2004), no. 1, Research Paper 58, 20. MR 2097324, DOI 10.37236/1811
- Guoce Xin and Yue Zhou, A Laurent series proof of the Habsieger-Kadell $q$-Morris identity, Electron. J. Combin. 21 (2014), no. 3, Paper 3.38, 16. MR 3262275, DOI 10.37236/4221
- Doron Zeilberger and David M. Bressoud, A proof of Andrews’ $q$-Dyson conjecture, Discrete Math. 54 (1985), no. 2, 201–224. MR 791661, DOI 10.1016/0012-365X(85)90081-0
- Yue Zhou, On the $q$-Dyson orthogonality problem, Adv. in Appl. Math. 130 (2021), Paper No. 102224, 33. MR 4266754, DOI 10.1016/j.aam.2021.102224
- Yue Zhou, The AFLT $q$-Morris constant term identity, Adv. in Appl. Math. 147 (2023), Paper No. 102506, 45. MR 4560439, DOI 10.1016/j.aam.2023.102506
Bibliographic Information
- Guoce Xin
- Affiliation: School of Mathematical Sciences, Capital Normal University, Beijing 100048, People’s Republic of China
- MR Author ID: 735352
- ORCID: 0000-0002-2505-5759
- Email: guoce_xin@163.com
- Yue Zhou
- Affiliation: School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha 410075, People’s Republic of China
- Email: zhouyue@csu.edu.cn
- Received by editor(s): July 3, 2022
- Received by editor(s) in revised form: January 29, 2024
- Published electronically: April 9, 2024
- Additional Notes: Yue Zhou is the corresponding author.
This work was supported by the National Natural Science Foundation of China (No. 12071311, 12171487). - © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 4303-4363
- MSC (2020): Primary 05A30, 33D70, 05E05
- DOI: https://doi.org/10.1090/tran/9142
- MathSciNet review: 4748621