Total power operations in spectral sequences
HTML articles powered by AMS MathViewer
- by William Balderrama;
- Trans. Amer. Math. Soc. 377 (2024), 4779-4823
- DOI: https://doi.org/10.1090/tran/9073
- Published electronically: May 17, 2024
- HTML | PDF
Abstract:
We describe how power operations descend through homotopy limit spectral sequences. We apply this to describe how norms appear in the $C_2$-equivariant Adams spectral sequence, to compute norms on $\pi _0$ of the equivariant $KU$-local sphere, and to compute power operations for the $K(1)$-local sphere. An appendix contains material on equivariant Bousfield localizations which may be of independent interest.References
- Vigleik Angeltveit and Anna Marie Bohmann, Graded Tambara functors, J. Pure Appl. Algebra 222 (2018), no. 12, 4126–4150. MR 3818296, DOI 10.1016/j.jpaa.2018.02.023
- Shôrô Araki and Kouyemon Iriye, Equivariant stable homotopy groups of spheres with involutions. I, Osaka Math. J. 19 (1982), no. 1, 1–55. MR 656233
- David Ayala, Aaron Mazel-Gee, and Nick Rozenblyum, Stratified noncommutative geometry, E-prints, arXiv:1910.14602, 2019.
- M. F. Atiyah and D. O. Tall, Group representations, $\lambda$-rings and the $J$-homomorphism, Topology 8 (1969), 253–297. MR 244387, DOI 10.1016/0040-9383(69)90015-9
- M. F. Atiyah, Characters and cohomology of finite groups, Inst. Hautes Études Sci. Publ. Math. 9 (1961), 23–64. MR 148722, DOI 10.1007/BF02698718
- M. F. Atiyah, Power operations in $K$-theory, Quart. J. Math. Oxford Ser. (2) 17 (1966), 165–193. MR 202130, DOI 10.1093/qmath/17.1.165
- M. F. Atiyah, Bott periodicity and the index of elliptic operators, Quart. J. Math. Oxford Ser. (2) 19 (1968), 113–140. MR 228000, DOI 10.1093/qmath/19.1.113
- William Balderrama, The $C_2$-equivariant $K(1)$-local sphere, E-prints, arXiv:2103.13895, 2021.
- William Balderrama, $K$-theory equivariant with respect to an elementary abelian 2-group, New York J. Math. 28 (2022), 1531–1553. MR 4515546
- Tobias Barthel, Chromatic completion, Proc. Amer. Math. Soc. 144 (2016), no. 5, 2263–2274. MR 3460184, DOI 10.1090/proc/12867
- William Balderrama, Dominic Leon Culver, and J. D. Quigley, The motivic lambda algebra and motivic Hopf invariant one problem, E-prints, arXiv:2112.07479, 2021.
- Peter J. Bonventre, Bertrand J. Guillou, and Nathaniel J. Stapleton, On the $KU_G$-local equivariant sphere, E-prints, arXiv:2204.03797, 2022.
- Andrew J. Blumberg and Michael A. Hill, Incomplete Tambara functors, Algebr. Geom. Topol. 18 (2018), no. 2, 723–766. MR 3773736, DOI 10.2140/agt.2018.18.723
- Anna Marie Bohmann, Christy Hazel, Jocelyne Ishak, Magdalena Kędziorek, and Clover May, Genuine-commutative structure on rational equivariant $K$-theory for finite abelian groups, Bull. Lond. Math. Soc. 54 (2022), no. 3, 1082–1103. MR 4453759, DOI 10.1112/blms.12616
- Eva Belmont and Daniel C. Isaksen, $\Bbb R$-motivic stable stems, J. Topol. 15 (2022), no. 4, 1755–1793. MR 4461846, DOI 10.1112/topo.12256
- A. K. Bousfield and D. M. Kan, The homotopy spectral sequence of a space with coefficients in a ring, Topology 11 (1972), 79–106. MR 283801, DOI 10.1016/0040-9383(72)90024-9
- R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger, $H_\infty$ ring spectra and their applications, Lecture Notes in Mathematics, vol. 1176, Springer-Verlag, Berlin, 1986. MR 836132, DOI 10.1007/BFb0075405
- Anna Marie Bohmann, A comparison of norm maps, Proc. Amer. Math. Soc. 142 (2014), no. 4, 1413–1423. With an appendix by Bohmann and Emily Riehl. MR 3162261, DOI 10.1090/S0002-9939-2014-11845-4
- N. Bourbaki, Éléments de mathématique. VII. Première partie: Les structures fondamentales de l’analyse. Livre II: Algèbre. Chapitre III: Algèbre multilinéaire, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1044, Hermann & Cie, Paris, 1948 (French). MR 26989
- A. K. Bousfield, The localization of spectra with respect to homology, Topology 18 (1979), no. 4, 257–281. MR 551009, DOI 10.1016/0040-9383(79)90018-1
- A. K. Bousfield, Homotopy spectral sequences and obstructions, Israel J. Math. 66 (1989), no. 1-3, 54–104. MR 1017155, DOI 10.1007/BF02765886
- M. Brun, Witt vectors and equivariant ring spectra applied to cobordism, Proc. Lond. Math. Soc. (3) 94 (2007), no. 2, 351–385. MR 2308231, DOI 10.1112/plms/pdl010
- Christian Carrick, Smashing localizations in equivariant stable homotopy, J. Homotopy Relat. Struct. 17 (2022), no. 3, 355–392. MR 4470384, DOI 10.1007/s40062-022-00310-1
- Dustin Clausen and Akhil Mathew, A short proof of telescopic Tate vanishing, Proc. Amer. Math. Soc. 145 (2017), no. 12, 5413–5417. MR 3717967, DOI 10.1090/proc/13648
- Shachar Carmeli and Allen Yuan, Higher semiadditive Grothendieck-Witt theory and the $K(1)$-local sphere, Commun. Am. Math. Soc. 3 (2023), 65–111. MR 4564543, DOI 10.1090/cams/17
- Daniel Dugger and Daniel C. Isaksen, Low-dimensional Milnor-Witt stems over $\Bbb {R}$, Ann. K-Theory 2 (2017), no. 2, 175–210. MR 3590344, DOI 10.2140/akt.2017.2.175
- Bertrand J. Guillou, Michael A. Hill, Daniel C. Isaksen, and Douglas Conner Ravenel, The cohomology of $C_2$-equivariant $\mathcal A(1)$ and the homotopy of $\textrm {ko}_{C_2}$, Tunis. J. Math. 2 (2020), no. 3, 567–632. MR 4041284, DOI 10.2140/tunis.2020.2.567
- Saul Glasman, Stratified categories, geometric fixed points and a generalized Arone-Ching theorem, E-prints, arXiv:1507.01976, 2017.
- J. P. C. Greenlees and J. P. May, Generalized Tate cohomology, Mem. Amer. Math. Soc. 113 (1995), no. 543, viii+178. MR 1230773, DOI 10.1090/memo/0543
- J. P. C. Greenlees and J. P. May, Localization and completion theorems for $M\textrm {U}$-module spectra, Ann. of Math. (2) 146 (1997), no. 3, 509–544. MR 1491447, DOI 10.2307/2952455
- J. P. C. Greenlees and Hal Sadofsky, The Tate spectrum of $v_n$-periodic complex oriented theories, Math. Z. 222 (1996), no. 3, 391–405. MR 1400199, DOI 10.1007/PL00004264
- M. A. Hill, M. J. Hopkins, and D. C. Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. (2) 184 (2016), no. 1, 1–262. MR 3505179, DOI 10.4007/annals.2016.184.1.1
- Michael A. Hill, Michael J. Hopkins, and Douglas C. Ravenel, The slice spectral sequence for the $C_4$ analog of real $K$-theory, Forum Math. 29 (2017), no. 2, 383–447. MR 3619120, DOI 10.1515/forum-2016-0017
- Michael A. Hill, On the André-Quillen homology of Tambara functors, J. Algebra 489 (2017), 115–137. MR 3686975, DOI 10.1016/j.jalgebra.2017.06.029
- Michael A. Hill, Equivariant chromatic localizations and commutativity, J. Homotopy Relat. Struct. 14 (2019), no. 3, 647–662. MR 3987553, DOI 10.1007/s40062-018-0226-2
- Po Hu and Igor Kriz, Real-oriented homotopy theory and an analogue of the Adams-Novikov spectral sequence, Topology 40 (2001), no. 2, 317–399. MR 1808224, DOI 10.1016/S0040-9383(99)00065-8
- Michael J. Hopkins, Nicholas J. Kuhn, and Douglas C. Ravenel, Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc. 13 (2000), no. 3, 553–594. MR 1758754, DOI 10.1090/S0894-0347-00-00332-5
- Michael A. Hill and Kristen Mazur, An equivariant tensor product on Mackey functors, J. Pure Appl. Algebra 223 (2019), no. 12, 5310–5345. MR 3975068, DOI 10.1016/j.jpaa.2019.04.001
- Michael J. Hopkins, $K(1)$-local $E_\infty$-ring spectra, Topological modular forms, Math. Surveys Monogr., vol. 201, Amer. Math. Soc., Providence, RI, 2014, pp. 287–302. MR 3328537, DOI 10.1090/surv/201/16
- Mark Hovey, John H. Palmieri, and Neil P. Strickland, Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128 (1997), no. 610, x+114. MR 1388895, DOI 10.1090/memo/0610
- Mark Hovey and Hal Sadofsky, Invertible spectra in the $E(n)$-local stable homotopy category, J. London Math. Soc. (2) 60 (1999), no. 1, 284–302. MR 1722151, DOI 10.1112/S0024610799007784
- Mark Hovey and Neil P. Strickland, Morava $K$-theories and localisation, Mem. Amer. Math. Soc. 139 (1999), no. 666, viii+100. MR 1601906, DOI 10.1090/memo/0666
- Mark Hovey and Neil Strickland, Comodules and Landweber exact homology theories, Adv. Math. 192 (2005), no. 2, 427–456. MR 2128706, DOI 10.1016/j.aim.2004.04.011
- David Copeland Johnson and W. Stephen Wilson, The Brown-Peterson homology of elementary $p$-groups, Amer. J. Math. 107 (1985), no. 2, 427–453. MR 784291, DOI 10.2307/2374422
- Alexander Körschgen, A comparison of two models of orbispaces, Homology Homotopy Appl. 20 (2018), no. 1, 329–358. MR 3775363, DOI 10.4310/HHA.2018.v20.n1.a19
- L. G. Lewis Jr., J. P. May, M. Steinberger, and J. E. McClure, Equivariant stable homotopy theory, Lecture Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986. With contributions by J. E. McClure. MR 866482, DOI 10.1007/BFb0075778
- Akhil Mathew, A thick subcategory theorem for modules over certain ring spectra, Geom. Topol. 19 (2015), no. 4, 2359–2392. MR 3375530, DOI 10.2140/gt.2015.19.2359
- Akhil Mathew, Examples of descent up to nilpotence, Geometric and topological aspects of the representation theory of finite groups, Springer Proc. Math. Stat., vol. 242, Springer, Cham, 2018, pp. 269–311. MR 3901164, DOI 10.1007/978-3-319-94033-5_{1}1
- Akhil Mathew, Niko Naumann, and Justin Noel, Nilpotence and descent in equivariant stable homotopy theory, Adv. Math. 305 (2017), 994–1084. MR 3570153, DOI 10.1016/j.aim.2016.09.027
- Akhil Mathew, Niko Naumann, and Justin Noel, Derived induction and restriction theory, Geom. Topol. 23 (2019), no. 2, 541–636. MR 3939042, DOI 10.2140/gt.2019.23.541
- Hiroyuki Nakaoka, Ideals of Tambara functors, Adv. Math. 230 (2012), no. 4-6, 2295–2331. MR 2927371, DOI 10.1016/j.aim.2012.04.021
- Eric Peterson, Formal geometry and bordism operations, Cambridge Studies in Advanced Mathematics, vol. 177, Cambridge University Press, Cambridge, 2019. With a foreword by Matthew Ando. MR 3890071
- Douglas C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), no. 2, 351–414. MR 737778, DOI 10.2307/2374308
- Douglas C. Ravenel, Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies, vol. 128, Princeton University Press, Princeton, NJ, 1992. Appendix C by Jeff Smith. MR 1192553
- Charles Rezk, The congruence criterion for power operations in Morava $E$-theory, Homology Homotopy Appl. 11 (2009), no. 2, 327–379. MR 2591924, DOI 10.4310/HHA.2009.v11.n2.a16
- Stefan Schwede, Global homotopy theory, New Mathematical Monographs, vol. 34, Cambridge University Press, Cambridge, 2018. MR 3838307, DOI 10.1017/9781108349161
- Michael Stahlhauer, $G_\infty$-ring spectra and Moore spectra for $\beta$-rings, Algebr. Geom. Topol. 23 (2023), no. 1, 87–153. MR 4568001, DOI 10.2140/agt.2023.23.87
- N. P. Strickland, Morava $E$-theory of symmetric groups, Topology 37 (1998), no. 4, 757–779. MR 1607736, DOI 10.1016/S0040-9383(97)00054-2
- Neil Strickland, Tambara functors, E-prints, arXiv:1205.2516, 2012.
- D. Tambara, On multiplicative transfer, Comm. Algebra 21 (1993), no. 4, 1393–1420. MR 1209937, DOI 10.1080/00927879308824627
- Tammo tom Dieck, Orbittypen und äquivariante Homologie. II, Arch. Math. (Basel) 26 (1975), no. 6, 650–662. MR 436177, DOI 10.1007/BF01229795
- Tammo tom Dieck, Transformation groups and representation theory, Lecture Notes in Mathematics, vol. 766, Springer, Berlin, 1979. MR 551743, DOI 10.1007/BFb0085965
- Takeshi Torii, The geometric fixed point spectrum of $(\textbf {Z}/p)^k$ Borel cohomology for $E_n$ and its completion, Recent progress in homotopy theory (Baltimore, MD, 2000) Contemp. Math., vol. 293, Amer. Math. Soc., Providence, RI, 2002, pp. 343–369. MR 1890743, DOI 10.1090/conm/293/04955
- John Ullman, Tambara functors and commutative ring spectra, E-prints, arXiv:1304.4912, 2013.
- John Richard Ullman, On the Regular Slice Spectral Sequence, ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 3211466
Bibliographic Information
- William Balderrama
- MR Author ID: 1534659
- Received by editor(s): September 16, 2022
- Received by editor(s) in revised form: April 18, 2023, August 16, 2023, and September 6, 2023
- Published electronically: May 17, 2024
- © Copyright 2024 by the author
- Journal: Trans. Amer. Math. Soc. 377 (2024), 4779-4823
- MSC (2020): Primary 19L47, 19L20, 55P43, 55P60, 55T05
- DOI: https://doi.org/10.1090/tran/9073
- MathSciNet review: 4778062