Higher rank $(q,t)$-Catalan polynomials, affine Springer fibers, and a finite rational shuffle theorem
HTML articles powered by AMS MathViewer
- by Nicolle González, José Simental and Monica Vazirani;
- Trans. Amer. Math. Soc. 377 (2024), 5087-5127
- DOI: https://doi.org/10.1090/tran/9115
- Published electronically: May 17, 2024
Abstract:
We introduce the higher rank $(q,t)$-Catalan polynomials and prove they equal truncations of the Hikita polynomial to a finite number of variables. Using affine compositions and a certain standardization map, we define a $\mathtt {dinv}$ statistic on rank $r$ semistandard $(m,n)$-parking functions and prove $\mathtt {codinv}$ counts the dimension of an affine space in an affine paving of a parabolic affine Springer fiber. Combining these results, we give a finite analogue of the Rational Shuffle Theorem in the context of double affine Hecke algebras. Lastly, we also give a Bizley-type formula for the higher rank Catalan numbers in the non-coprime case.References
- Jaclyn Anderson, Partitions which are simultaneously $t_1$- and $t_2$-core, Discrete Math. 248 (2002), no. 1-3, 237–243. MR 1892698, DOI 10.1016/S0012-365X(01)00343-0
- Drew Armstrong, Nicholas A. Loehr, and Gregory S. Warrington, Rational parking functions and Catalan numbers, Ann. Comb. 20 (2016), no. 1, 21–58. MR 3461934, DOI 10.1007/s00026-015-0293-6
- Jean-Christophe Aval and François Bergeron, Interlaced rectangular parking functions, Sém. Lothar. Combin. 81 (2020), Art. B81h, 16. MR 4097433
- Yuri Berest, Pavel Etingof, and Victor Ginzburg, Finite-dimensional representations of rational Cherednik algebras, Int. Math. Res. Not. 19 (2003), 1053–1088. MR 1961261, DOI 10.1155/S1073792803210205
- F. Bergeron, Symmetric functions and rectangular Catalan combinatorics, Preprint, arXiv:2112.09799, 2021.
- F. Bergeron, Triangular diagonal harmonics conjectures, Preprint, arXiv:2303.02224, 2023.
- Francois Bergeron, Adriano Garsia, Emily Sergel Leven, and Guoce Xin, Compositional $(km,kn)$-shuffle conjectures, Int. Math. Res. Not. IMRN 14 (2016), 4229–4270. MR 3556418, DOI 10.1093/imrn/rnv272
- F. Bergeron and A. M. Garsia, Science fiction and Macdonald’s polynomials, Algebraic methods and $q$-special functions (Montréal, QC, 1996) CRM Proc. Lecture Notes, vol. 22, Amer. Math. Soc., Providence, RI, 1999, pp. 1–52. MR 1726826, DOI 10.1090/crmp/022/01
- F. Bergeron, A. M. Garsia, M. Haiman, and G. Tesler, Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions, Methods Appl. Anal. 6 (1999), no. 3, 363–420. Dedicated to Richard A. Askey on the occasion of his 65th birthday, Part III. MR 1803316, DOI 10.4310/MAA.1999.v6.n3.a7
- François Bergeron and Mikhail Mazin, Combinatorics of triangular partitions, Enumer. Comb. Appl. 3 (2023), no. 1, Paper No. S2R1, 20. MR 4528166, DOI 10.54550/eca2023v3s1r1
- M. T. L. Bizley, Derivation of a new formula for the number of minimal lattice paths from $(0,0)$ to $(km,kn)$ having just $t$ contacts with the line $my=nx$ and having no points above this line; and a proof of Grossman’s formula for the number of paths which may touch but do not rise above this line, J. Inst. Actuar. 80 (1954), 55–62. MR 61567, DOI 10.1017/S002026810005424X
- Jonah Blasiak, Mark Haiman, Jennifer Morse, Anna Pun, and George H. Seelinger, A shuffle theorem for paths under any line, Forum Math. Pi 11 (2023), Paper No. e5, 38. MR 4553914, DOI 10.1017/fmp.2023.4
- Igor Burban and Olivier Schiffmann, On the Hall algebra of an elliptic curve, I, Duke Math. J. 161 (2012), no. 7, 1171–1231. MR 2922373, DOI 10.1215/00127094-1593263
- Erik Carlsson and Anton Mellit, A proof of the shuffle conjecture, J. Amer. Math. Soc. 31 (2018), no. 3, 661–697. MR 3787405, DOI 10.1090/jams/893
- E. Carlsson and A. Oblomkov, Affine Schubert calculus and double coinvariants, Preprint, arXiv:1801.09033, 2018.
- Ivan Cherednik, Double affine Hecke algebras, London Mathematical Society Lecture Note Series, vol. 319, Cambridge University Press, Cambridge, 2005. MR 2133033, DOI 10.1017/CBO9780511546501
- Ben Elias and Matthew Hogancamp, On the computation of torus link homology, Compos. Math. 155 (2019), no. 1, 164–205. MR 3880028, DOI 10.1112/s0010437x18007571
- Pavel Etingof, Vasily Krylov, Ivan Losev, and José Simental, Representations with minimal support for quantized Gieseker varieties, Math. Z. 298 (2021), no. 3-4, 1593–1621. MR 4282141, DOI 10.1007/s00209-020-02642-1
- B. L. Feigin and A. I. Tsymbaliuk, Equivariant $K$-theory of Hilbert schemes via shuffle algebra, Kyoto J. Math. 51 (2011), no. 4, 831–854. MR 2854154, DOI 10.1215/21562261-1424875
- A. M. Garsia and M. Haiman, A remarkable $q,t$-Catalan sequence and $q$-Lagrange inversion, J. Algebraic Combin. 5 (1996), no. 3, 191–244. MR 1394305, DOI 10.1023/A:1022476211638
- Ira M. Gessel, Multipartite $P$-partitions and inner products of skew Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 289–317. MR 777705, DOI 10.1090/conm/034/777705
- Nicolle González, José Simental, and Monica Vazirani, Semistandard parking functions and a finite shuffle theorem, Sém. Lothar. Combin. 89B (2023), Art. 84, 12. MR 4659592
- Iain Gordon, On the quotient ring by diagonal invariants, Invent. Math. 153 (2003), no. 3, 503–518. MR 2000467, DOI 10.1007/s00222-003-0296-5
- Iain G. Gordon and Stephen Griffeth, Catalan numbers for complex reflection groups, Amer. J. Math. 134 (2012), no. 6, 1491–1502. MR 2999286, DOI 10.1353/ajm.2012.0047
- E. Gorsky, $q,t$-Catalan numbers and knot homology, Zeta functions in algebra and geometry, Contemp. Math., vol. 566, Amer. Math. Soc., Providence, RI, 2012, pp. 213–232. MR 2858925, DOI 10.1090/conm/566/11222
- Evgeny Gorsky and Mikhail Mazin, Compactified Jacobians and $q,t$-Catalan numbers, I, J. Combin. Theory Ser. A 120 (2013), no. 1, 49–63. MR 2971696, DOI 10.1016/j.jcta.2012.07.002
- Evgeny Gorsky and Mikhail Mazin, Compactified Jacobians and $q,t$-Catalan numbers, II, J. Algebraic Combin. 39 (2014), no. 1, 153–186. MR 3144397, DOI 10.1007/s10801-013-0443-z
- Eugene Gorsky and Mikhail Mazin, Rational parking functions and LLT polynomials, J. Combin. Theory Ser. A 140 (2016), 123–140. MR 3461138, DOI 10.1016/j.jcta.2016.01.004
- Eugene Gorsky, Mikhail Mazin, and Monica Vazirani, Affine permutations and rational slope parking functions, Trans. Amer. Math. Soc. 368 (2016), no. 12, 8403–8445. MR 3551576, DOI 10.1090/tran/6584
- Eugene Gorsky and Andrei Neguţ, Refined knot invariants and Hilbert schemes, J. Math. Pures Appl. (9) 104 (2015), no. 3, 403–435 (English, with English and French summaries). MR 3383172, DOI 10.1016/j.matpur.2015.03.003
- Eugene Gorsky, Alexei Oblomkov, Jacob Rasmussen, and Vivek Shende, Torus knots and the rational DAHA, Duke Math. J. 163 (2014), no. 14, 2709–2794. MR 3273582, DOI 10.1215/00127094-2827126
- E. Gorsky, J. Simental, and M. Vazirani, From representations of the rational Cherednik algebra to parabolic Hilbert schemes via the Dunkl-Opdam subalgebra, Transf. Groups, DOI 10.1007/s00031-022-09743-7.
- J. Haglund, M. Haiman, N. Loehr, J. B. Remmel, and A. Ulyanov, A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J. 126 (2005), no. 2, 195–232. MR 2115257, DOI 10.1215/S0012-7094-04-12621-1
- J. Haglund, J. Morse, and M. Zabrocki, A compositional shuffle conjecture specifying touch points of the Dyck path, Canad. J. Math. 64 (2012), no. 4, 822–844. MR 2957232, DOI 10.4153/CJM-2011-078-4
- Mark Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14 (2001), no. 4, 941–1006. MR 1839919, DOI 10.1090/S0894-0347-01-00373-3
- Mark Haiman, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math. 149 (2002), no. 2, 371–407. MR 1918676, DOI 10.1007/s002220200219
- Mark Haiman, Combinatorics, symmetric functions, and Hilbert schemes, Current developments in mathematics, 2002, Int. Press, Somerville, MA, 2003, pp. 39–111. MR 2051783
- Tatsuyuki Hikita, Affine Springer fibers of type $A$ and combinatorics of diagonal coinvariants, Adv. Math. 263 (2014), 88–122. MR 3239135, DOI 10.1016/j.aim.2014.06.011
- Ryan Kaliszewski and Debdut Karmakar, A rational Catalan formula for $(m,3)$-Hikita polynomials, Electron. J. Combin. 25 (2018), no. 1, Paper No. 1.21, 25. MR 3761935, DOI 10.37236/6680
- D. Kazhdan and G. Lusztig, Fixed point varieties on affine flag manifolds, Israel J. Math. 62 (1988), no. 2, 129–168. MR 947819, DOI 10.1007/BF02787119
- A. G. Konheim and B. Weiss, An occupancy discipline and applications, SIAM J. Appl. Math. 14 (1966), no. 6, 1266–1274.
- Nicholas A. Loehr, Conjectured statistics for the higher $q,t$-Catalan sequences, Electron. J. Combin. 12 (2005), Research Paper 9, 54. MR 2134172, DOI 10.37236/1906
- Nicholas A. Loehr and Gregory S. Warrington, A continuous family of partition statistics equidistributed with length, J. Combin. Theory Ser. A 116 (2009), no. 2, 379–403. MR 2475023, DOI 10.1016/j.jcta.2008.07.001
- G. Lusztig and J. M. Smelt, Fixed point varieties on the space of lattices, Bull. London Math. Soc. 23 (1991), no. 3, 213–218. MR 1123328, DOI 10.1112/blms/23.3.213
- Anton Mellit, Toric braids and $(m,n)$-parking functions, Duke Math. J. 170 (2021), no. 18, 4123–4169. MR 4348234, DOI 10.1215/00127094-2021-0011
- Hugh Morton and Peter Samuelson, The HOMFLYPT skein algebra of the torus and the elliptic Hall algebra, Duke Math. J. 166 (2017), no. 5, 801–854. MR 3626565, DOI 10.1215/00127094-3718881
- Andrei Neguţ, Moduli of flags of sheaves and their $K$-theory, Algebr. Geom. 2 (2015), no. 1, 19–43. MR 3322196, DOI 10.14231/AG-2015-002
- Alexei Oblomkov and Zhiwei Yun, Geometric representations of graded and rational Cherednik algebras, Adv. Math. 292 (2016), 601–706. MR 3464031, DOI 10.1016/j.aim.2016.01.015
- Paolo Papi, Inversion tables and minimal left coset representatives for Weyl groups of classical type, J. Pure Appl. Algebra 161 (2001), no. 1-2, 219–234. MR 1834087, DOI 10.1016/S0022-4049(00)00101-8
- O. Schiffmann and E. Vasserot, The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald polynomials, Compos. Math. 147 (2011), no. 1, 188–234. MR 2771130, DOI 10.1112/S0010437X10004872
- Olivier Schiffmann and Eric Vasserot, The elliptic Hall algebra and the $K$-theory of the Hilbert scheme of $\Bbb A^2$, Duke Math. J. 162 (2013), no. 2, 279–366. MR 3018956, DOI 10.1215/00127094-1961849
- A. Wilson, A symmetric function lift of torus link homology, Comb. Theory, To appear.
- A. T. Wilson, Torus link homology and the nabla operator, J. Combin. Theory Ser. A 154 (2018), 129–144. MR 3718063, DOI 10.1016/j.jcta.2017.08.009
- Zhiwei Yun, Lectures on Springer theories and orbital integrals, Geometry of moduli spaces and representation theory, IAS/Park City Math. Ser., vol. 24, Amer. Math. Soc., Providence, RI, 2017, pp. 155–215. MR 3752461
Bibliographic Information
- Nicolle González
- Affiliation: Department of Mathematics, University of California, Berkeley, California 94720-3840
- MR Author ID: 1320209
- ORCID: 0000-0002-5729-499X
- Email: nicolles@berkeley.edu
- José Simental
- Affiliation: Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, México
- ORCID: 0000-0002-8626-4634
- Email: simental@im.unam.mx
- Monica Vazirani
- Affiliation: Department of Mathematics, University of California, Davis, 95616
- MR Author ID: 679611
- ORCID: 0000-0002-3016-2479
- Email: vazirani@math.ucdavis.edu
- Received by editor(s): April 15, 2023
- Received by editor(s) in revised form: December 12, 2023
- Published electronically: May 17, 2024
- Additional Notes: The third author was partially supported by Simons Foundation Grant 707426.
- © Copyright 2024 Nicolle Gonzalez; José Eduardo Simental; Monica Vazirani.
- Journal: Trans. Amer. Math. Soc. 377 (2024), 5087-5127
- MSC (2020): Primary 05E10; Secondary 05E05, 20C08, 05E14
- DOI: https://doi.org/10.1090/tran/9115
- MathSciNet review: 4778069