Band projections in spaces of regular operators
HTML articles powered by AMS MathViewer
- by David Muñoz-Lahoz and Pedro Tradacete;
- Trans. Amer. Math. Soc. 377 (2024), 5197-5218
- DOI: https://doi.org/10.1090/tran/9162
- Published electronically: May 15, 2024
- HTML | PDF | Request permission
Abstract:
We introduce inner band projections in the space of regular operators on a Dedekind complete Banach lattice and study some structural properties of this class. In particular, we provide a new characterization of atomic order continuous Banach lattices as those for which all band projections in the corresponding space of regular operators are inner. We also characterize the multiplication operators $L_AR_B$ which are band projections precisely as those with $A,B$ being band projections up to a scalar multiple.References
- Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, Graduate Studies in Mathematics, vol. 50, American Mathematical Society, Providence, RI, 2002. MR 1921782, DOI 10.1090/gsm/050
- Charalambos D. Aliprantis and Owen Burkinshaw, Positive operators, Springer, Dordrecht, 2006. Reprint of the 1985 original. MR 2262133, DOI 10.1007/978-1-4020-5008-4
- Raúl E. Curto and Martin Mathieu (eds.), Elementary operators and their applications, Operator Theory: Advances and Applications, vol. 212, Birkhäuser/Springer Basel AG, Basel, 2011. Papers from the 3rd International Workshop held at Queen’s University Belfast, Belfast, April 14–17, 2009. MR 2789128, DOI 10.1007/978-3-0348-0037-2
- C. B. Huijsmans and B. de Pagter, Disjointness preserving and diffuse operators, Compositio Math. 79 (1991), no. 3, 351–374. MR 1121143
- C. B. Huijsmans and A. W. Wickstead, Bands in lattices of operators, Proc. Amer. Math. Soc. 124 (1996), no. 12, 3835–3841. MR 1346978, DOI 10.1090/S0002-9939-96-03547-2
- Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. MR 540367, DOI 10.1007/978-3-662-35347-9
- Peter Meyer-Nieberg, Banach lattices, Universitext, Springer-Verlag, Berlin, 1991. MR 1128093, DOI 10.1007/978-3-642-76724-1
- M. Mathieu (ed.), Proc. Int. Workshop on Elementary Operators and Applications, Blaubeuren, 1991; World Scientific, Singapore, 1992.
- Martin Mathieu and Pedro Tradacete, Strictly singular multiplication operators on $\mathcal L (X)$, Israel J. Math. 236 (2020), no. 2, 685–709. MR 4093900, DOI 10.1007/s11856-020-1985-0
- J. Synnatzschke, Über einige verbandstheoretische Eigenschaften der Multiplikation von Operatoren in Vektorverbänden, Math. Nachr. 95 (1980), 273–292 (German). MR 592901, DOI 10.1002/mana.19800950125
- V. G. Troitsky, Introduction to vector and Banach lattices. (forthcoming book)
- Klaus Vala, On compact sets of compact operators, Ann. Acad. Sci. Fenn. Ser. A I 351 (1964), 9. MR 169078
- Jürgen Voigt, The projection onto the center of operators in a Banach lattice, Math. Z. 199 (1988), no. 1, 115–117. MR 954756, DOI 10.1007/BF01160214
- A. W. Wickstead, The ideal centre of a Banach lattice, Proc. Roy. Irish Acad. Sect. A 76 (1976), no. 4, 15–23. MR 420214, DOI 10.1016/0010-4485(75)90081-0
- A. W. Wickstead, Banach lattices with trivial centre, Proc. Roy. Irish Acad. Sect. A 88 (1988), no. 1, 71–83. MR 974286
- A. W. Wickstead, The centre of spaces of regular operators, Math. Z. 241 (2002), no. 1, 165–179. MR 1930989, DOI 10.1007/s002090200411
- A. W. Wickstead, Norms of basic elementary operators on algebras of regular operators, Proc. Amer. Math. Soc. 143 (2015), no. 12, 5275–5280. MR 3411145, DOI 10.1090/proc/12664
- A. W. Wickstead, When do the regular operators between two Banach lattices form a lattice?, Positivity and noncommutative analysis, Trends Math., Birkhäuser/Springer, Cham, [2019] ©2019, pp. 591–599. MR 4042292, DOI 10.1007/978-3-030-10850-2_{2}9
Bibliographic Information
- David Muñoz-Lahoz
- Affiliation: Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Consejo Superior de Investigaciones Científicas, C/ Nicolás Cabrera, 13–15, Campus de Cantoblanco UAM, 28049 Madrid, Spain
- ORCID: 0009-0009-1287-1691
- Email: davidmunozlahoz@gmail.com
- Pedro Tradacete
- Affiliation: Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Consejo Superior de Investigaciones Científicas, C/ Nicolás Cabrera, 13–15, Campus de Cantoblanco UAM, 28049 Madrid, Spain
- MR Author ID: 840453
- ORCID: 0000-0001-7759-3068
- Email: pedro.tradacete@icmat.es
- Received by editor(s): October 13, 2023
- Received by editor(s) in revised form: January 30, 2024
- Published electronically: May 15, 2024
- Additional Notes: Research of the first author was supported by JAE Intro ICU scholarship associated to CEX2019-000904-S funded by MCIN/AEI/10.13039/501100011033. Research of the second author was partially supported by grants PID2020-116398GB-I00 and CEX2019-000904-S funded by MCIN/AEI/10.13039/501100011033, as well as by a 2022 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 5197-5218
- MSC (2020): Primary 46B42, 46A32, 46A45, 47B65, 47B48, 47L10
- DOI: https://doi.org/10.1090/tran/9162
- MathSciNet review: 4778072