The biholomorphic invariance of essential normality on bounded symmetric domains
HTML articles powered by AMS MathViewer
- by Lijia Ding;
- Trans. Amer. Math. Soc. 377 (2024), 4993-5026
- DOI: https://doi.org/10.1090/tran/9167
- Published electronically: May 21, 2024
- HTML | PDF | Request permission
Abstract:
This paper mainly concerns the biholomorphic invariance of $p$-essential normality of Hilbert modules on bounded symmetric domains. By establishing new integral formulas concerning rational function kernels for the Taylor functional calculus, we prove a biholomorphic invariance result related to the $p$-essential normality. Furthermore, for quotient analytic Hilbert submodules determined by analytic varieties, we develop an algebraic approach to proving that the $p$-essential normality is preserved invariant if the coordinate multipliers are replaced by arbitrary automorphism multipliers. Moreover, the Taylor spectrum of the compression tuple is calculated under a mild condition, which gives a solvability result of the corona problem for quotient submodules. As applications, we extend the recent results on the equivalence between $\infty$-essential normality and hyperrigidity.References
- Jonathan Arazy and Genkai Zhang, Homogeneous multiplication operators on bounded symmetric domains, J. Funct. Anal. 202 (2003), no. 1, 44–66. MR 1994764, DOI 10.1016/S0022-1236(02)00072-1
- William Arveson, Subalgebras of $C^*$-algebras. III. Multivariable operator theory, Acta Math. 181 (1998), no. 2, 159–228. MR 1668582, DOI 10.1007/BF02392585
- William Arveson, The curvature invariant of a Hilbert module over $\textbf {C}[z_1,\cdots ,z_d]$, J. Reine Angew. Math. 522 (2000), 173–236. MR 1758582, DOI 10.1515/crll.2000.037
- William B. Arveson, $p$-summable commutators in dimension $d$, J. Operator Theory 54 (2005), no. 1, 101–117. MR 2168861
- William Arveson, Quotients of standard Hilbert modules, Trans. Amer. Math. Soc. 359 (2007), no. 12, 6027–6055. MR 2336315, DOI 10.1090/S0002-9947-07-04209-2
- Cho-Ho Chu, Bounded symmetric domains in Banach spaces, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, [2021] ©2021. MR 4274584
- Raphaël Clouâtre and Edward J. Timko, Gelfand transforms and boundary representations of complete Nevanlinna-Pick quotients, Trans. Amer. Math. Soc. 374 (2021), no. 3, 2107–2147. MR 4216734, DOI 10.1090/tran/8279
- Alain Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 257–360. MR 823176
- Şerban Costea, Eric T. Sawyer, and Brett D. Wick, The corona theorem for the Drury-Arveson Hardy space and other holomorphic Besov-Sobolev spaces on the unit ball in $\Bbb C^n$, Anal. PDE 4 (2011), no. 4, 499–550. MR 3077143, DOI 10.2140/apde.2011.4.499
- Kenneth R. Davidson, Christopher Ramsey, and Orr Moshe Shalit, The isomorphism problem for some universal operator algebras, Adv. Math. 228 (2011), no. 1, 167–218. MR 2822231, DOI 10.1016/j.aim.2011.05.015
- Kenneth R. Davidson, Christopher Ramsey, and Orr Moshe Shalit, Operator algebras for analytic varieties, Trans. Amer. Math. Soc. 367 (2015), no. 2, 1121–1150. MR 3280039, DOI 10.1090/S0002-9947-2014-05888-1
- Lijia Ding, Schatten class Bergman-type and Szegö-type operators on bounded symmetric domains, Adv. Math. 401 (2022), Paper No. 108314, 27. MR 4391646, DOI 10.1016/j.aim.2022.108314
- Ronald G. Douglas, Xiang Tang, and Guoliang Yu, An analytic Grothendieck Riemann Roch theorem, Adv. Math. 294 (2016), 307–331. MR 3479565, DOI 10.1016/j.aim.2016.02.031
- Ronald G. Douglas and Yi Wang, Geometric Arveson-Douglas conjecture and holomorphic extensions, Indiana Univ. Math. J. 66 (2017), no. 5, 1499–1535. MR 3718434, DOI 10.1512/iumj.2017.66.6302
- Miroslav Engliš and Jörg Eschmeier, Geometric Arveson-Douglas conjecture, Adv. Math. 274 (2015), 606–630. MR 3318162, DOI 10.1016/j.aim.2014.11.026
- H. Grauert and K. Fritzsche, Several complex variables, Graduate Texts in Mathematics, Vol. 38, Springer-Verlag, New York-Heidelberg, 1976. Translated from the German. MR 414912
- Kunyu Guo and Yongjiang Duan, Spectral properties of quotients of Beurling-type submodules of the Hardy module over the unit ball, Studia Math. 177 (2006), no. 2, 141–152. MR 2285237, DOI 10.4064/sm177-2-4
- Kunyu Guo and Kai Wang, Essentially normal Hilbert modules and $K$-homology, Math. Ann. 340 (2008), no. 4, 907–934. MR 2372744, DOI 10.1007/s00208-007-0175-2
- Kunyu Guo, Penghui Wang, and Chong Zhao, Essentially normal quotient weighted Bergman modules over the bidisk and distinguished varieties, Adv. Math. 432 (2023), Paper No. 109266, 30. MR 4631998, DOI 10.1016/j.aim.2023.109266
- Kunyu Guo and Yi Wang, A survey on the Arveson-Douglas conjecture, Operator theory, operator algebras and their interactions with geometry and topology—Ronald G. Douglas memorial volume, Oper. Theory Adv. Appl., vol. 278, Birkhäuser/Springer, Cham, [2020] ©2020, pp. 289–311. MR 4200257, DOI 10.1007/978-3-030-43380-2_{1}3
- Matthew Kennedy and Orr Moshe Shalit, Essential normality and the decomposability of algebraic varieties, New York J. Math. 18 (2012), 877–890. MR 2991427
- Matthew Kennedy and Orr Moshe Shalit, Corrigendum to “Essential normality, essential norms and hyperrigidity” [J. Funct. Anal. 268 (2015) 2990–3016] [ MR3331791], J. Funct. Anal. 270 (2016), no. 7, 2812–2815. MR 3464058, DOI 10.1016/j.jfa.2015.12.015
- O. Loos, Bounded symmetric domains and Jordan pairs, Mathematical Lectures, The University of California, 1977.
- Joseph L. Taylor, The analytic-functional calculus for several commuting operators, Acta Math. 125 (1970), 1–38. MR 271741, DOI 10.1007/BF02392329
- Mihai Putinar, The superposition property for Taylor’s functional calculus, J. Operator Theory 7 (1982), no. 1, 149–155. MR 650199
- Norberto Salinas, The $\overline \partial$-formalism and the $C^*$-algebra of the Bergman $n$-tuple, J. Operator Theory 22 (1989), no. 2, 325–343. MR 1043731
- Orr Moshe Shalit, Stable polynomial division and essential normality of graded Hilbert modules, J. Lond. Math. Soc. (2) 83 (2011), no. 2, 273–289. MR 2776637, DOI 10.1112/jlms/jdq054
- Harald Upmeier, Toeplitz $C^{\ast }$-algebras on bounded symmetric domains, Ann. of Math. (2) 119 (1984), no. 3, 549–576. MR 744863, DOI 10.2307/2007085
- Harald Upmeier, Toeplitz operators and index theory in several complex variables, Operator Theory: Advances and Applications, vol. 81, Birkhäuser Verlag, Basel, 1996. MR 1384981, DOI 10.1016/s0168-9274(96)90019-7
- Harald Upmeier and Kai Wang, Dixmier trace for Toeplitz operators on symmetric domains, J. Funct. Anal. 271 (2016), no. 3, 532–565. MR 3506955, DOI 10.1016/j.jfa.2016.04.022
- Shuyi Zhang, Essential normality for Beurling-type quotient modules over tube-type domains, Integral Equations Operator Theory 93 (2021), no. 1, Paper No. 3, 18. MR 4198383, DOI 10.1007/s00020-020-02613-5
Bibliographic Information
- Lijia Ding
- Affiliation: School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, Henan 450001, People’s Republic of China
- Email: ljding@zzu.edu.cn
- Received by editor(s): December 6, 2023
- Published electronically: May 21, 2024
- Additional Notes: The author was partially supported by the National Natural Science Foundation of China (12201571).
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 4993-5026
- MSC (2020): Primary 46H25; Secondary 32B15, 32M15, 47A13
- DOI: https://doi.org/10.1090/tran/9167