A complex case of Vojta’s general abc conjecture and cases of Campana’s orbifold conjecture
HTML articles powered by AMS MathViewer
- by Ji Guo and Julie Tzu-Yueh Wang;
- Trans. Amer. Math. Soc. 377 (2024), 4961-4991
- DOI: https://doi.org/10.1090/tran/9175
- Published electronically: April 24, 2024
- HTML | PDF | Request permission
Abstract:
We show a truncated second main theorem of level one with explicit exceptional sets for analytic maps into $\mathbb P^2$ intersecting the coordinate lines with sufficiently high multiplicities. The proof is based on a greatest common divisor theorem for an analytic map $f:\mathbb C\mapsto \mathbb P^n$ and two homogeneous polynomials in $n+1$ variables with coefficients which are meromorphic functions of the same growth as the analytic map $f$. As applications, we study some cases of Campana’s orbifold conjecture for $\mathbb P^2$ and finite ramified covers of $\mathbb P^2$ with three components admitting sufficiently large multiplicities. In addition, we explicitly determine the exceptional sets. Consequently, it implies the strong Green-Griffiths-Lang conjecture for finite ramified covers of $\mathbb G_m^2$.References
- Damian Brotbek and Ya Deng, Kobayashi hyperbolicity of the complements of general hypersurfaces of high degree, Geom. Funct. Anal. 29 (2019), no. 3, 690–750. MR 3962877, DOI 10.1007/s00039-019-00496-2
- B. Cadorel, Y. Deng and K. Yamanoi, Hyperbolicity and fundamental groups of complex quasi-projective varieties, arXiv:2212.12225.
- Frédéric Campana, Fibres multiples sur les surfaces: aspects geométriques, hyperboliques et arithmétiques, Manuscripta Math. 117 (2005), no. 4, 429–461 (French, with English summary). MR 2163487, DOI 10.1007/s00229-005-0570-5
- Frédéric Campana, Lionel Darondeau, and Erwan Rousseau, Orbifold hyperbolicity, Compos. Math. 156 (2020), no. 8, 1664–1698. MR 4163858, DOI 10.1112/s0010437x20007265
- Pietro Corvaja and Umberto Zannier, Some cases of Vojta’s conjecture on integral points over function fields, J. Algebraic Geom. 17 (2008), no. 2, 295–333. MR 2369088, DOI 10.1090/S1056-3911-07-00489-4
- Pietro Corvaja and Umberto Zannier, Algebraic hyperbolicity of ramified covers of $\Bbb G^2_m$ (and integral points on affine subsets of $\Bbb P_2$), J. Differential Geom. 93 (2013), no. 3, 355–377. MR 3024299
- Olivier Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York, 2001. MR 1841091, DOI 10.1007/978-1-4757-5406-3
- Mark Green, On the functional equation $f^{2}=e^{2\phi _{1}}+e^{2\phi _{2}}+e^{2\phi _{3}}\$ and a new Picard theorem, Trans. Amer. Math. Soc. 195 (1974), 223–230. MR 348112, DOI 10.1090/S0002-9947-1974-0348112-4
- J. Guo, K. D. Nguyen, C.-L. Sun and J. T.-Y. Wang, Vojta’s abc Conjecture for algebraic tori and applications over function felds, arXiv:2106.15881v3.
- Ji Guo, Chia-Liang Sun, and Julie Tzu-Yueh Wang, On the $d$th roots of exponential polynomials and related problems arising from the Green-Griffiths-Lang conjecture, J. Geom. Anal. 31 (2021), no. 5, 5201–5218. MR 4244902, DOI 10.1007/s12220-020-00475-2
- Ji Guo, Chia-Liang Sun, and Julie Tzu-Yueh Wang, On Pisot’s $d$-th root conjecture for function fields and related GCD estimates, J. Number Theory 231 (2022), 401–432. MR 4330939, DOI 10.1016/j.jnt.2021.05.010
- Ji Guo, Chia-Liang Sun, and Julie Tzu-Yueh Wang, A truncated second main theorem for algebraic tori with moving targets and applications, J. Lond. Math. Soc. (2) 106 (2022), no. 4, 3670–3686. MR 4524207, DOI 10.1112/jlms.12670
- Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556, DOI 10.1007/978-1-4613-0041-0
- Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471, DOI 10.1007/978-3-642-18808-4
- Aaron Levin and Julie Tzu-Yueh Wang, Greatest common divisors of analytic functions and Nevanlinna theory on algebraic tori, J. Reine Angew. Math. 767 (2020), 77–107. MR 4160303, DOI 10.1515/crelle-2019-0033
- Junjiro Noguchi, Jörg Winkelmann, and Katsutoshi Yamanoi, Degeneracy of holomorphic curves into algebraic varieties, J. Math. Pures Appl. (9) 88 (2007), no. 3, 293–306 (English, with English and French summaries). MR 2355461, DOI 10.1016/j.matpur.2007.07.003
- Junjiro Noguchi, Jörg Winkelmann, and Katsutoshi Yamanoi, The second main theorem for holomorphic curves into semi-abelian varieties. II, Forum Math. 20 (2008), no. 3, 469–503. MR 2418202, DOI 10.1515/FORUM.2008.024
- Erwan Rousseau, Amos Turchet, and Julie Tzu-Yueh Wang, Nonspecial varieties and generalised Lang-Vojta conjectures, Forum Math. Sigma 9 (2021), Paper No. e11, 29. MR 4215673, DOI 10.1017/fms.2021.8
- Min Ru, Nevanlinna theory and its relation to Diophantine approximation, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, [2021] ©2021. Second edition [of 1850002]. MR 4265173, DOI 10.1142/12188
- Min Ru and Julie Tzu-Yueh Wang, Truncated second main theorem with moving targets, Trans. Amer. Math. Soc. 356 (2004), no. 2, 557–571. MR 2022710, DOI 10.1090/S0002-9947-03-03453-6
- Paul Vojta, Diophantine approximation and Nevanlinna theory, Arithmetic geometry, Lecture Notes in Math., vol. 2009, Springer, Berlin, 2011, pp. 111–224. MR 2757629, DOI 10.1007/978-3-642-15945-9_{3}
- B. L. van der Waerden, Algebra. Vol. 2, Frederick Ungar Publishing Co., New York, 1970. Translated by John R. Schulenberger. MR 263583
- Julie Tzu-Yueh Wang, Cartan’s conjecture with moving targets of same growth and effective Wirsing’s theorem over function fields, Math. Z. 234 (2000), no. 4, 739–754. MR 1778407, DOI 10.1007/s002090050006
- Julie Tzu-Yueh Wang, An effective Schmidt’s subspace theorem over function fields, Math. Z. 246 (2004), no. 4, 811–844. MR 2045840, DOI 10.1007/s00209-003-0618-8
- Katsutoshi Yamanoi, The second main theorem for small functions and related problems, Acta Math. 192 (2004), no. 2, 225–294. MR 2096455, DOI 10.1007/BF02392741
Bibliographic Information
- Ji Guo
- Affiliation: School of Mathematics and Statistics, HNP-LAMA, Central South University, Changsha 410075, China
- ORCID: 0000-0002-4374-2691
- Email: 221250@csu.edu.cn
- Julie Tzu-Yueh Wang
- Affiliation: Institute of Mathematics, Academia Sinica, 6F, Astronomy-Mathematics Building, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- MR Author ID: 364623
- ORCID: 0000-0003-2133-1178
- Email: jwang@math.sinica.edu.tw
- Received by editor(s): December 19, 2022
- Received by editor(s) in revised form: November 28, 2023, and November 29, 2023
- Published electronically: April 24, 2024
- Additional Notes: The first author was supported in part by National Natural Science Foundation of China (No. 12201643) and Natural Science Foundation of Hunan Province, China (No. 2023JJ40690). The second author was supported in part by Taiwan’s MoST grant 110-2115-M-001-009-MY3.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 4961-4991
- MSC (2020): Primary 30D35; Secondary 11J97, 30A99
- DOI: https://doi.org/10.1090/tran/9175
- MathSciNet review: 4778067