Effective approximation to complex algebraic numbers by algebraic numbers of bounded degree
HTML articles powered by AMS MathViewer
- by Prajeet Bajpai and Yann Bugeaud;
- Trans. Amer. Math. Soc. 377 (2024), 5247-5269
- DOI: https://doi.org/10.1090/tran/9190
- Published electronically: May 21, 2024
- HTML | PDF | Request permission
Abstract:
We establish the first effective improvements on the Liouville inequality for approximation to complex non-real algebraic numbers by complex algebraic numbers of degree at most $4$.References
- Prajeet Bajpai, Effective methods for norm-form equations, Math. Ann. 387 (2023), no. 3-4, 1271–1288. MR 4657421, DOI 10.1007/s00208-022-02487-5
- P. Bajpai, Explicitly solving a norm-form equation in several variables, Forthcoming.
- P. Bajpai and M.A. Bennett, Effective $S$-unit equations beyond 3 terms: Newman’s conjecture, Acta Arith. To appear.
- A. Baker, Linear forms in the logarithms of algebraic numbers. I, II, III, Mathematika 13 (1966), 204–216; ibid. 14 (1967), 102–107; ibid. 14 (1967), 220–228. MR 220680, DOI 10.1112/s0025579300003843
- A. Baker, A sharpening of the bounds for linear forms in logarithms. II, Acta Arith. 24 (1973), 33–36. (errata insert). MR 376549, DOI 10.4064/aa-24-1-33-36
- Enrico Bombieri, Effective Diophantine approximation on $\textbf {G}_m$, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 20 (1993), no. 1, 61–89. MR 1215999
- Yann Bugeaud, Approximation by algebraic numbers, Cambridge Tracts in Mathematics, vol. 160, Cambridge University Press, Cambridge, 2004. MR 2136100, DOI 10.1017/CBO9780511542886
- Yann Bugeaud, On the approximation to algebraic numbers by algebraic numbers, Glas. Mat. Ser. III 44(64) (2009), no. 2, 323–331. MR 2587305, DOI 10.3336/gm.44.2.05
- Yann Bugeaud, Linear forms in logarithms and applications, IRMA Lectures in Mathematics and Theoretical Physics, vol. 28, European Mathematical Society (EMS), Zürich, 2018. MR 3791777, DOI 10.4171/183
- Yann Bugeaud, $B’$, Publ. Math. Debrecen 103 (2023), no. 3-4, 499–533. MR 4672949
- Yann Bugeaud and Jan-Hendrik Evertse, Approximation of complex algebraic numbers by algebraic numbers of bounded degree, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 8 (2009), no. 2, 333–368. MR 2548250
- Jan-Hendrik Evertse and Kálmán Győry, Unit equations in Diophantine number theory, Cambridge Studies in Advanced Mathematics, vol. 146, Cambridge University Press, Cambridge, 2015. MR 3524535, DOI 10.1017/CBO9781316160749
- N. I. Fel′dman, An effective power sharpening of a theorem of Liouville, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 973–990 (Russian). MR 289418
- R. Güting, Polynomials with multiple zeros, Mathematika 14 (1967), 181–196. MR 223544, DOI 10.1112/S002557930000379X
- J. F. Koksma, Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen, Monatsh. Math. Phys. 48 (1939), 176–189 (German). MR 845, DOI 10.1007/BF01696176
- The LMFDB Collaboration, The L-functions and modular forms database, https://www.lmfdb.org.
- Kurt Mahler, Zur Approximation der Exponentialfunktion und des Logarithmus. Teil I, J. Reine Angew. Math. 166 (1932), 118–136 (German). MR 1581302, DOI 10.1515/crll.1932.166.118
- K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 1–20; corrigendum, 168. MR 72182, DOI 10.1112/S0025579300000644
- Wolfgang M. Schmidt, Simultaneous approximation to algebraic numbers by rationals, Acta Math. 125 (1970), 189–201. MR 268129, DOI 10.1007/BF02392334
- Wolfgang M. Schmidt, Norm form equations, Ann. of Math. (2) 96 (1972), 526–551. MR 314761, DOI 10.2307/1970824
- Wolfgang M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics, vol. 785, Springer, Berlin, 1980. MR 568710
- P. Vojta, Integral points on varieties. PhD thesis, Harvard University, 1993.
- Michel Waldschmidt, Diophantine approximation on linear algebraic groups, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 326, Springer-Verlag, Berlin, 2000. Transcendence properties of the exponential function in several variables. MR 1756786, DOI 10.1007/978-3-662-11569-5
- Eduard Wirsing, Approximation mit algebraischen Zahlen beschränkten Grades, J. Reine Angew. Math. 206 (1961), 67–77 (German). MR 142510, DOI 10.1515/crll.1961.206.67
Bibliographic Information
- Prajeet Bajpai
- Affiliation: Department of Mathematics, University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada
- MR Author ID: 1503101
- Email: prajeet@math.ubc.ca
- Yann Bugeaud
- Affiliation: I.R.M.A., UMR 7501, Université de Strasbourg et CNRS, 7 rue René Descartes, 67084 Strasbourg Cedex, France; and Institut universitaire de France
- MR Author ID: 341801
- Email: bugeaud@math.unistra.fr
- Received by editor(s): May 23, 2023
- Received by editor(s) in revised form: September 29, 2023, October 31, 2023, January 12, 2024, March 20, 2024, and April 7, 2024
- Published electronically: May 21, 2024
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 5247-5269
- MSC (2020): Primary 11J68; Secondary 11D57, 11J86
- DOI: https://doi.org/10.1090/tran/9190
- MathSciNet review: 4778074