Equivariant lattice bases
HTML articles powered by AMS MathViewer
- by Dinh Van Le and Tim Römer;
- Trans. Amer. Math. Soc. 377 (2024), 4865-4893
- DOI: https://doi.org/10.1090/tran/9193
- Published electronically: May 21, 2024
- HTML | PDF | Request permission
Abstract:
We study lattices in free abelian groups of infinite rank that are invariant under the action of the infinite symmetric group, with emphasis on finiteness of their equivariant bases. Our framework provides a new method for proving finiteness results in algebraic statistics. As an illustration, we show that every invariant lattice in $\mathbb {Z}^{(\mathbb {N}\times [c])}$, where $c\in \mathbb {N}$, has a finite equivariant Graver basis. This result generalizes and strengthens several finiteness results about Markov bases in the literature.References
- 4ti2 team, 4ti2 – A software package for algebraic, geometric and combinatorial problems on linear spaces. Available at https://4ti2.github.io.
- Satoshi Aoki, Hisayuki Hara, and Akimichi Takemura, Markov bases in algebraic statistics, Springer Series in Statistics, Springer, New York, 2012. MR 2961912, DOI 10.1007/978-1-4614-3719-2
- Satoshi Aoki and Akimichi Takemura, Minimal basis for a connected Markov chain over $3\times 3\times K$ contingency tables with fixed two-dimensional marginals, Aust. N. Z. J. Stat. 45 (2003), no. 2, 229–249. MR 1983834, DOI 10.1111/1467-842X.00278
- Matthias Aschenbrenner and Christopher J. Hillar, Finite generation of symmetric ideals, Trans. Amer. Math. Soc. 359 (2007), no. 11, 5171–5192. MR 2327026, DOI 10.1090/S0002-9947-07-04116-5
- Winfried Bruns and Joseph Gubeladze, Polytopes, rings, and $K$-theory, Springer Monographs in Mathematics, Springer, Dordrecht, 2009. MR 2508056, DOI 10.1007/b105283
- Thomas Church and Benson Farb, Representation theory and homological stability, Adv. Math. 245 (2013), 250–314. MR 3084430, DOI 10.1016/j.aim.2013.06.016
- Jesús A. De Loera, Raymond Hemmecke, and Matthias Köppe, Algebraic and geometric ideas in the theory of discrete optimization, MOS-SIAM Series on Optimization, vol. 14, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia, PA, 2013. MR 3024570
- Jesús A. De Loera and Shmuel Onn, Markov bases of three-way tables are arbitrarily complicated, J. Symbolic Comput. 41 (2006), no. 2, 173–181. MR 2197153, DOI 10.1016/j.jsc.2005.04.010
- Persi Diaconis and Bernd Sturmfels, Algebraic algorithms for sampling from conditional distributions, Ann. Statist. 26 (1998), no. 1, 363–397. MR 1608156, DOI 10.1214/aos/1030563990
- Reinhard Diestel, Graph theory, 5th ed., Graduate Texts in Mathematics, vol. 173, Springer, Berlin, 2017. MR 3644391, DOI 10.1007/978-3-662-53622-3
- Adrian Dobra, Markov bases for decomposable graphical models, Bernoulli 9 (2003), no. 6, 1093–1108. MR 2046819, DOI 10.3150/bj/1072215202
- Adrian Dobra and Seth Sullivant, A divide-and-conquer algorithm for generating Markov bases of multi-way tables, Comput. Statist. 19 (2004), no. 3, 347–366. MR 2096204, DOI 10.1007/BF03372101
- Jan Draisma, Finiteness for the $k$-factor model and chirality varieties, Adv. Math. 223 (2010), no. 1, 243–256. MR 2563217, DOI 10.1016/j.aim.2009.08.008
- Jan Draisma, Noetherianity up to symmetry, Combinatorial algebraic geometry, Lecture Notes in Math., vol. 2108, Springer, Cham, 2014, pp. 33–61. MR 3329086, DOI 10.1007/978-3-319-04870-3_{2}
- Jan Draisma, Rob Eggermont, Robert Krone, and Anton Leykin, Noetherianity for infinite-dimensional toric varieties, Algebra Number Theory 9 (2015), no. 8, 1857–1880. MR 3418745, DOI 10.2140/ant.2015.9.1857
- Jan Draisma and Jochen Kuttler, Bounded-rank tensors are defined in bounded degree, Duke Math. J. 163 (2014), no. 1, 35–63. MR 3161311, DOI 10.1215/00127094-2405170
- Mathias Drton, Bernd Sturmfels, and Seth Sullivant, Lectures on algebraic statistics, Oberwolfach Seminars, vol. 39, Birkhäuser Verlag, Basel, 2009. MR 2723140, DOI 10.1007/978-3-7643-8905-5
- Arka Ghosh, Piotr Hofman, and Sławomir Lasota, Orbit-finite linear programming, 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE Comput. Soc. Press, Los Alamitos, CA, [2023] ©2023, pp. 14. MR 4617682
- Jack E. Graver, On the foundations of linear and integer linear programming. I, Math. Programming 9 (1975), no. 2, 207–226. MR 386673, DOI 10.1007/BF01681344
- D. Grayson and M. Stillman, Macaulay2, a software system for research in algebraic geometry. Available at https://macaulay2.com.
- Graham Higman, Ordering by divisibility in abstract algebras, Proc. London Math. Soc. (3) 2 (1952), 326–336. MR 49867, DOI 10.1112/plms/s3-2.1.326
- Christopher J. Hillar and Abraham Martín del Campo, Finiteness theorems and algorithms for permutation invariant chains of Laurent lattice ideals, J. Symbolic Comput. 50 (2013), 314–334. MR 2996883, DOI 10.1016/j.jsc.2012.06.006
- Christopher J. Hillar and Seth Sullivant, Finite Gröbner bases in infinite dimensional polynomial rings and applications, Adv. Math. 229 (2012), no. 1, 1–25. MR 2854168, DOI 10.1016/j.aim.2011.08.009
- Serkan Hoşten and Seth Sullivant, A finiteness theorem for Markov bases of hierarchical models, J. Combin. Theory Ser. A 114 (2007), no. 2, 311–321. MR 2293094, DOI 10.1016/j.jcta.2006.06.001
- Kei-ichiro Iima and Yuji Yoshino, Gröbner bases for the polynomial ring with infinite variables and their applications, Comm. Algebra 37 (2009), no. 10, 3424–3437. MR 2561854, DOI 10.1080/00927870802502878
- Thomas Kahle, Robert Krone, and Anton Leykin, Equivariant lattice generators and Markov bases, ISSAC 2014—Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2014, pp. 264–271. MR 3239935, DOI 10.1145/2608628.2608646
- Thomas Kahle, Dinh Van Le, and Tim Römer, Invariant chains in algebra and discrete geometry, SIAM J. Discrete Math. 36 (2022), no. 2, 975–999. MR 4407600, DOI 10.1137/20M1385652
- Joseph B. Kruskal, The theory of well-quasi-ordering: A frequently discovered concept, J. Combinatorial Theory Ser. A 13 (1972), 297–305. MR 306057, DOI 10.1016/0097-3165(72)90063-5
- Dinh V. Le and Tim Römer, Theorems of Carathéodory, Minkowski-Weyl, and Gordan up to symmetry, SIAM J. Appl. Algebra Geom. 7 (2023), no. 1, 291–310. MR 4568011, DOI 10.1137/22M148865X
- E. Levin and V. Chandrasekaran, Free Descriptions of Convex Sets. Preprint, 2023, available at arXiv:2307.04230.
- E. Levin and M. Díaz, Any-dimensional equivariant neural networks. Preprint, 2023, available at arXiv:2306.06327.
- Uwe Nagel and Tim Römer, Equivariant Hilbert series in non-noetherian polynomial rings, J. Algebra 486 (2017), 204–245. MR 3666212, DOI 10.1016/j.jalgebra.2017.05.011
- Francisco Santos and Bernd Sturmfels, Higher Lawrence configurations, J. Combin. Theory Ser. A 103 (2003), no. 1, 151–164. MR 1986836, DOI 10.1016/S0097-3165(03)00092-X
- Bernd Sturmfels, Gröbner bases and convex polytopes, University Lecture Series, vol. 8, American Mathematical Society, Providence, RI, 1996. MR 1363949, DOI 10.1090/ulect/008
- Bernd Sturmfels, Robert Weismantel, and Günter M. Ziegler, Gröbner bases of lattices, corner polyhedra, and integer programming, Beiträge Algebra Geom. 36 (1995), no. 2, 281–298. MR 1358427
- Seth Sullivant, Algebraic statistics, Graduate Studies in Mathematics, vol. 194, American Mathematical Society, Providence, RI, 2018. MR 3838364, DOI 10.1090/gsm/194
Bibliographic Information
- Dinh Van Le
- Affiliation: Universität Osnabrück, Osnabrück, Germany
- Address at time of publication: FPT University, Hanoi, Vietnam
- MR Author ID: 889943
- ORCID: 0000-0001-5585-8774
- Email: dilevan@uos.de, dinhlv2@fe.edu.vn
- Tim Römer
- Affiliation: Universität Osnabrück, Osnabrück, Germany
- ORCID: 0000-0003-3459-5148
- Email: troemer@uos.de
- Received by editor(s): September 22, 2023
- Published electronically: May 21, 2024
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 4865-4893
- MSC (2020): Primary 05E18; Secondary 52C07, 20B30, 13P10
- DOI: https://doi.org/10.1090/tran/9193
- MathSciNet review: 4778064