Twisted Kuperberg invariants of knots and Reidemeister torsion via twisted Drinfeld doubles
HTML articles powered by AMS MathViewer
- by Daniel López Neumann;
- Trans. Amer. Math. Soc. 377 (2024), 5361-5387
- DOI: https://doi.org/10.1090/tran/9099
- Published electronically: June 11, 2024
- HTML | PDF | Request permission
Abstract:
In this paper, we consider the Reshetikhin-Turaev invariants of knots in the three-sphere obtained from a twisted Drinfeld double of a Hopf algebra, or equivalently, the relative Drinfeld center of the crossed product $\text {Rep}(H)\rtimes \text {Aut}(H)$. These are quantum invariants of knots endowed with a homomorphism of the knot group to $\text {Aut}(H)$. We show that, at least for knots in the three-sphere, these invariants provide a non-involutory generalization of the Fox-calculus-twisted Kuperberg invariants of sutured manifolds introduced previously by the author, which are only defined for involutory Hopf algebras. In particular, we describe the $SL(n,\mathbb {C})$-twisted Reidemeister torsion of a knot complement as a Reshetikhin-Turaev invariant.References
- Yasuhiro Akutsu, Tetsuo Deguchi, and Tomotada Ohtsuki, Invariants of colored links, J. Knot Theory Ramifications 1 (1992), no. 2, 161–184. MR 1164114, DOI 10.1142/S0218216592000094
- Christian Blanchet, Francesco Costantino, Nathan Geer, and Bertrand Patureau-Mirand, Non-semi-simple TQFTs, Reidemeister torsion and Kashaev’s invariants, Adv. Math. 301 (2016), 1–78. MR 3539369, DOI 10.1016/j.aim.2016.06.003
- Christian Blanchet, Nathan Geer, Bertrand Patureau-Mirand, and Nicolai Reshetikhin, Holonomy braidings, biquandles and quantum invariants of links with $\textrm {SL}_2(\Bbb C)$ flat connections, Selecta Math. (N.S.) 26 (2020), no. 2, Paper No. 19, 58. MR 4073970, DOI 10.1007/s00029-020-0545-0
- Liang Chang and Shawn X. Cui, On two invariants of three manifolds from Hopf algebras, Adv. Math. 351 (2019), 621–652. MR 3954041, DOI 10.1016/j.aim.2019.05.013
- Francesco Costantino, Nathan Geer, and Bertrand Patureau-Mirand, Quantum invariants of 3-manifolds via link surgery presentations and non-semi-simple categories, J. Topol. 7 (2014), no. 4, 1005–1053. MR 3286896, DOI 10.1112/jtopol/jtu006
- Alexei Davydov, Pavel Etingof, and Dmitri Nikshych, Autoequivalences of tensor categories attached to quantum groups at roots of 1, Lie groups, geometry, and representation theory, Progr. Math., vol. 326, Birkhäuser/Springer, Cham, 2018, pp. 109–136. MR 3890207, DOI 10.1007/978-3-030-02191-7_{5}
- Alexei Davydov and Dmitri Nikshych, The Picard crossed module of a braided tensor category, Algebra Number Theory 7 (2013), no. 6, 1365–1403. MR 3107567, DOI 10.2140/ant.2013.7.1365
- Alexei Davydov and Dmitri Nikshych, Braided Picard groups and graded extensions of braided tensor categories, Selecta Math. (N.S.) 27 (2021), no. 4, Paper No. 65, 87. MR 4281262, DOI 10.1007/s00029-021-00670-1
- Pavel Etingof, Dmitri Nikshych, and Victor Ostrik, Fusion categories and homotopy theory, Quantum Topol. 1 (2010), no. 3, 209–273. With an appendix by Ehud Meir. MR 2677836, DOI 10.4171/QT/6
- Stefan Friedl and Stefano Vidussi, A survey of twisted Alexander polynomials, The mathematics of knots, Contrib. Math. Comput. Sci., vol. 1, Springer, Heidelberg, 2011, pp. 45–94. MR 2777847, DOI 10.1007/978-3-642-15637-3_{3}
- Shlomo Gelaki, Deepak Naidu, and Dmitri Nikshych, Centers of graded fusion categories, Algebra Number Theory 3 (2009), no. 8, 959–990. MR 2587410, DOI 10.2140/ant.2009.3.959
- R. Kashaev and N. Reshetikhin, Invariants of tangles with flat connections in their complements, Graphs and patterns in mathematics and theoretical physics, Proc. Sympos. Pure Math., vol. 73, Amer. Math. Soc., Providence, RI, 2005, pp. 151–172. MR 2131015, DOI 10.1090/pspum/073/2131015
- Rinat Kashaev and Nicolai Reshetikhin, Braiding for quantum $\textrm {gl}_2$ at roots of unity, Noncommutative geometry and representation theory in mathematical physics, Contemp. Math., vol. 391, Amer. Math. Soc., Providence, RI, 2005, pp. 183–197. MR 2184023, DOI 10.1090/conm/391/07329
- Christian Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995. MR 1321145, DOI 10.1007/978-1-4612-0783-2
- Paul Kirk and Charles Livingston, Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology 38 (1999), no. 3, 635–661. MR 1670420, DOI 10.1016/S0040-9383(98)00039-1
- Greg Kuperberg, Involutory Hopf algebras and $3$-manifold invariants, Internat. J. Math. 2 (1991), no. 1, 41–66. MR 1082836, DOI 10.1142/S0129167X91000053
- Greg Kuperberg, Noninvolutory Hopf algebras and $3$-manifold invariants, Duke Math. J. 84 (1996), no. 1, 83–129. MR 1394749, DOI 10.1215/S0012-7094-96-08403-3
- Xiao Song Lin, Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. (Engl. Ser.) 17 (2001), no. 3, 361–380. MR 1852950, DOI 10.1007/s101140100122
- Calvin McPhail-Snyder, Holonomy invariants of links and nonabelian Reidemeister torsion, Quantum Topol. 13 (2022), no. 1, 55–135. MR 4404798, DOI 10.4171/qt/160
- Daniel López Neumann, Kuperberg invariants for balanced sutured 3-manifolds, Canad. J. Math. 73 (2021), no. 6, 1698–1742. MR 4350558, DOI 10.4153/S0008414X20000656
- Daniel López Neumann, Twisting Kuperberg invariants via Fox calculus and Reidemeister torsion, Algebr. Geom. Topol. (2022).
- Tomotada Ohtsuki, Quantum invariants, Series on Knots and Everything, vol. 29, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. A study of knots, 3-manifolds, and their sets. MR 1881401
- Joan Porti, Reidemeister torsion, hyperbolic three-manifolds, and character varieties, Handbook of group actions. Vol. IV, Adv. Lect. Math. (ALM), vol. 41, Int. Press, Somerville, MA, 2018, pp. 447–507. MR 3888692
- David E. Radford, Hopf algebras, Series on Knots and Everything, vol. 49, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. MR 2894855
- N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), no. 1, 1–26. MR 1036112, DOI 10.1007/BF02096491
- V. G. Turaev, Quantum invariants of knots and 3-manifolds, De Gruyter Studies in Mathematics, vol. 18, Walter de Gruyter & Co., Berlin, 1994. MR 1292673, DOI 10.1515/9783110883275
- V. G. Turaev, Homotopy field theory in dimension 3 and crossed group-categories, arXiv:math/0005291, 2000.
- Vladimir Turaev, Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001. Notes taken by Felix Schlenk. MR 1809561, DOI 10.1007/978-3-0348-8321-4
- Vladimir Turaev, Homotopy quantum field theory, EMS Tracts in Mathematics, vol. 10, European Mathematical Society (EMS), Zürich, 2010. Appendix 5 by Michael Müger and Appendices 6 and 7 by Alexis Virelizier. MR 2674592, DOI 10.4171/086
- Vladimir Turaev and Alexis Virelizier, On 3-dimensional homotopy quantum field theory II: The surgery approach, Internat. J. Math. 25 (2014), no. 4, 1450027, 66. MR 3195545, DOI 10.1142/S0129167X1450027X
- V. G. Turaev and A. Virelizier, On 3-dimensional homotopy quantum field theory III: comparison of two approaches, arXiv:1911.10257, 2019.
- Alexis Virelizier, Hopf group-coalgebras, J. Pure Appl. Algebra 171 (2002), no. 1, 75–122. MR 1903398, DOI 10.1016/S0022-4049(01)00125-6
- Alexis Virelizier, Graded quantum groups and quasitriangular Hopf group-coalgebras, Comm. Algebra 33 (2005), no. 9, 3029–3050. MR 2175378, DOI 10.1081/AGB-200066110
- Masaaki Wada, Twisted Alexander polynomial for finitely presentable groups, Topology 33 (1994), no. 2, 241–256. MR 1273784, DOI 10.1016/0040-9383(94)90013-2
Bibliographic Information
- Daniel López Neumann
- Affiliation: Department of Mathematics, Indiana University, Indiana
- Email: dlopezne@indiana.edu
- Received by editor(s): February 15, 2022
- Received by editor(s) in revised form: September 5, 2023
- Published electronically: June 11, 2024
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 5361-5387
- MSC (2020): Primary 57K16, 57K31
- DOI: https://doi.org/10.1090/tran/9099
- MathSciNet review: 4771225