On a Torelli Principle for automorphisms of Klein hypersurfaces
HTML articles powered by AMS MathViewer
- by Víctor González-Aguilera, Alvaro Liendo, Pedro Montero and Roberto Villaflor Loyola;
- Trans. Amer. Math. Soc. 377 (2024), 5483-5511
- DOI: https://doi.org/10.1090/tran/9111
- Published electronically: June 20, 2024
- HTML | PDF | Request permission
Abstract:
Using a refinement of the differential method introduced by Oguiso and Yu, we provide effective conditions under which the automorphisms of a smooth degree $d$ hypersurface of $\mathbf {P}^{n+1}$ are given by generalized triangular matrices. Applying this criterion we compute all the remaining automorphism groups of Klein hypersurfaces of dimension $n\geq 1$ and degree $d\geq 3$ with $(n,d)\neq (2,4)$. We introduce the concept of extremal polarized Hodge structures, which are structures that admit an automorphism of large prime order. Using this notion, we compute the automorphism group of the polarized Hodge structure of certain Klein hypersurfaces that we call of Wagstaff type, which are characterized by the existence of an automorphism of large prime order. For cubic hypersurfaces and some other values of $(n,d)$, we show that both groups coincide (up to involution) as predicted by the Torelli Principle.References
- E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932, DOI 10.1007/978-1-4757-5323-3
- Allan Adler, On the automorphism group of a certain cubic threefold, Amer. J. Math. 100 (1978), no. 6, 1275–1280. MR 522700, DOI 10.2307/2373973
- Allan Adler, Some integral representations of $\textrm {PSL}_{2}(\textbf {F}_{p})$ and their applications, J. Algebra 72 (1981), no. 1, 115–145. MR 634619, DOI 10.1016/0021-8693(81)90314-8
- Aldo Andreotti, On a theorem of Torelli, Amer. J. Math. 80 (1958), 801–828. MR 102518, DOI 10.2307/2372835
- H. Bennama and J. Bertin, Remarques sur les varietés abéliennes avec un automorphisme d’ordre premier, Manuscripta Math. 94 (1997), no. 4, 409–425 (French). MR 1484635, DOI 10.1007/BF02677863
- Arnaud Beauville, Les singularités du diviseur $\Theta$ de la jacobienne intermédiaire de l’hypersurface cubique dans $\textbf {P}^{4}$, Algebraic threefolds (Varenna, 1981) Lecture Notes in Math., vol. 947, Springer, Berlin-New York, 1982, pp. 190–208 (French). MR 672617
- Arnaud Beauville, Some surfaces with maximal Picard number, J. Éc. polytech. Math. 1 (2014), 101–116 (English, with English and French summaries). MR 3322784, DOI 10.5802/jep.5
- Christina Birkenhake and Herbert Lange, Complex abelian varieties, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 2004. MR 2062673, DOI 10.1007/978-3-662-06307-1
- Dan Burns Jr. and Michael Rapoport, On the Torelli problem for kählerian $K-3$ surfaces, Ann. Sci. École Norm. Sup. (4) 8 (1975), no. 2, 235–273. MR 447635, DOI 10.24033/asens.1287
- Richard Brauer, On groups whose order contains a prime number to the first power. II, Amer. J. Math. 64 (1942), 421–440. MR 6538, DOI 10.2307/2371694
- C. Herbert Clemens and Phillip A. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of Math. (2) 95 (1972), 281–356. MR 302652, DOI 10.2307/1970801
- David A. Cox and Mark L. Green, Polynomial structures and generic Torelli for projective hypersurfaces, Compositio Math. 73 (1990), no. 2, 121–124. MR 1046733
- H. C. Chang, On plane algebraic curves, Chinese J. Math. 6 (1978), no. 2, 185–189. MR 529972
- François Charles, A remark on the Torelli theorem for cubic fourfolds, Preprint, arXiv:1209.4509, 2012.
- Alberto Collino, The Abel-Jacobi isomorphism for the cubic fivefold, Pacific J. Math. 122 (1986), no. 1, 43–55. MR 825222, DOI 10.2140/pjm.1986.122.43
- Pierre Deligne, Les intersections complètes de niveau de Hodge un, Invent. Math. 15 (1972), 237–250 (French). MR 301029, DOI 10.1007/BF01404128
- Harvey Dubner and Torbjörn Granlund, Primes of the form $(b^n+1)/(b+1)$, J. Integer Seq. 3 (2000), no. 2, Article 00.2.7, 8. MR 1800881
- Igor V. Dolgachev, Classical algebraic geometry, Cambridge University Press, Cambridge, 2012. A modern view. MR 2964027, DOI 10.1017/CBO9781139084437
- Ron Donagi, Generic Torelli for projective hypersurfaces, Compositio Math. 50 (1983), no. 2-3, 325–353. MR 720291
- Robert Friedman, A new proof of the global Torelli theorem for $K3$ surfaces, Ann. of Math. (2) 120 (1984), no. 2, 237–269. MR 763907, DOI 10.2307/2006942
- Víctor González-Aguilera and Alvaro Liendo, Automorphisms of prime order of smooth cubic $n$-folds, Arch. Math. (Basel) 97 (2011), no. 1, 25–37. MR 2820585, DOI 10.1007/s00013-011-0247-0
- Víctor González-Aguilera and Alvaro Liendo, On the order of an automorphism of a smooth hypersurface, Israel J. Math. 197 (2013), no. 1, 29–49. MR 3096604, DOI 10.1007/s11856-012-0177-y
- Víctor González-Aguilera, Alvaro Liendo, and Pedro Montero, On the liftability of the automorphism group of smooth hypersurfaces of the projective space, Israel J. Math. 255 (2023), no. 1, 283–310. MR 4619537, DOI 10.1007/s11856-022-2417-0
- V. González-Aguilera, J. M. Muñoz-Porras, and Alexis G. Zamora, On the 0-dimensional irreducible components of the singular locus of $\scr A_g$, Arch. Math. (Basel) 84 (2005), no. 4, 298–303. MR 2135039, DOI 10.1007/s00013-004-1193-x
- Phillip A. Griffiths, On the periods of certain rational integrals. I, II, Ann. of Math. (2) 90 (1969), 460–495; 90 (1969), 496–541. MR 260733, DOI 10.2307/1970746
- Takeshi Harui, Automorphism groups of smooth plane curves, Kodai Math. J. 42 (2019), no. 2, 308–331. MR 3981307, DOI 10.2996/kmj/1562032832
- Daniel Huybrechts and Jørgen Vold Rennemo, Hochschild cohomology versus the Jacobian ring and the Torelli theorem for cubic fourfolds, Algebr. Geom. 6 (2019), no. 1, 76–99. MR 3904800, DOI 10.14231/AG-2019-005
- Daniel Huybrechts, Lectures on K3 surfaces, Cambridge Studies in Advanced Mathematics, vol. 158, Cambridge University Press, Cambridge, 2016. MR 3586372, DOI 10.1017/CBO9781316594193
- Daniel Huybrechts, The geometry of cubic hypersurfaces, Cambridge Studies in Advanced Mathematics, vol. 206, Cambridge University Press, Cambridge, 2023. MR 4589520, DOI 10.1017/9781009280020
- Felix Klein, Ueber die Transformation siebenter Ordnung der elliptischen Functionen, Math. Ann. 14 (1878), no. 3, 428–471 (German). MR 1509988, DOI 10.1007/BF01677143
- János Kollár, Algebraic hypersurfaces, Bull. Amer. Math. Soc. (N.S.) 56 (2019), no. 4, 543–568. MR 4007161, DOI 10.1090/bull/1663
- Aristides Kontogeorgis, Automorphisms of Fermat-like varieties, Manuscripta Math. 107 (2002), no. 2, 187–205. MR 1894739, DOI 10.1007/s002290100233
- Shigeyuki Kond\B{o}, $K3$ surfaces, EMS Tracts in Mathematics, vol. 32, EMS Publishing House, Berlin, [2020] ©2020. Translated from the Japanese original by the author. MR 4321993
- Kristin Lauter, Geometric methods for improving the upper bounds on the number of rational points on algebraic curves over finite fields, J. Algebraic Geom. 10 (2001), no. 1, 19–36. With an appendix in French by J.-P. Serre. MR 1795548
- M. Letizia, The Abel-Jacobi mapping for the quartic threefold, Invent. Math. 75 (1984), no. 3, 477–492. MR 735337, DOI 10.1007/BF01388640
- Eduard Looijenga, The period map for cubic fourfolds, Invent. Math. 177 (2009), no. 1, 213–233. MR 2507640, DOI 10.1007/s00222-009-0178-6
- Radu Laza and Zhiwei Zheng, Automorphisms and periods of cubic fourfolds, Math. Z. 300 (2022), no. 2, 1455–1507. MR 4363785, DOI 10.1007/s00209-021-02810-x
- Hideyuki Matsumura and Paul Monsky, On the automorphisms of hypersurfaces, J. Math. Kyoto Univ. 3 (1963/64), 347–361. MR 168559, DOI 10.1215/kjm/1250524785
- Keiji Oguiso and Xun Yu, Automorphism groups of smooth quintic threefolds, Asian J. Math. 23 (2019), no. 2, 201–256. MR 3978250, DOI 10.4310/AJM.2019.v23.n2.a2
- Bjorn Poonen, Varieties without extra automorphisms. III. Hypersurfaces, Finite Fields Appl. 11 (2005), no. 2, 230–268. MR 2129679, DOI 10.1016/j.ffa.2004.12.001
- I. I. Pjateckiĭ-Šapiro and I. R. Šafarevič, Torelli’s theorem for algebraic surfaces of type $\textrm {K}3$, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 530–572 (Russian). MR 284440
- M. Rapoport, Complément à l’article de P. Deligne “La conjecture de Weil pour les surfaces $K3$”, Invent. Math. 15 (1972), 227–236 (French). MR 309943, DOI 10.1007/BF01404127
- Xavier Roulleau, The Fano surface of the Klein cubic threefold, J. Math. Kyoto Univ. 49 (2009), no. 1, 113–129. MR 2531132, DOI 10.1215/kjm/1248983032
- Tetsuji Shioda, An explicit algorithm for computing the Picard number of certain algebraic surfaces, Amer. J. Math. 108 (1986), no. 2, 415–432. MR 833362, DOI 10.2307/2374678
- Tetsuji Shioda, Arithmetic and geometry of Fermat curves, Algebraic Geometry Seminar (Singapore, 1987) World Sci. Publishing, Singapore, 1988, pp. 95–102. MR 966448
- T. Shioda and H. Inose, On singular $K3$ surfaces, Complex analysis and algebraic geometry, Iwanami Shoten Publishers, Tokyo, 1977, pp. 119–136. MR 441982
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
- Goro Shimura and Yutaka Taniyama, Complex multiplication of abelian varieties and its applications to number theory, Publications of the Mathematical Society of Japan, vol. 6, Mathematical Society of Japan, Tokyo, 1961. MR 125113
- Michio Suzuki, Group theory. I, Grundlehren der Mathematischen Wissenschaften, vol. 247, Springer-Verlag, Berlin-New York, 1982. Translated from the Japanese by the author. MR 648772, DOI 10.1007/978-3-642-61804-8
- Claire Voisin, Théorème de Torelli pour les cubiques de $\textbf {P}^5$, Invent. Math. 86 (1986), no. 3, 577–601 (French). MR 860684, DOI 10.1007/BF01389270
- Claire Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés [Specialized Courses], vol. 10, Société Mathématique de France, Paris, 2002 (French). MR 1988456, DOI 10.1017/CBO9780511615344
- Claire Voisin, Schiffer variations and the generic Torelli theorem for hypersurfaces, Compos. Math. 158 (2022), no. 1, 89–122. MR 4379048, DOI 10.1112/s0010437x21007727
- Zhiwei Zheng, On abelian automorphism groups of hypersurfaces, Israel J. Math. 247 (2022), no. 1, 479–498. MR 4425345, DOI 10.1007/s11856-021-2275-1
Bibliographic Information
- Víctor González-Aguilera
- Affiliation: Departamento de Matemáticas, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Email: victor.gonzalez@usm.cl
- Alvaro Liendo
- Affiliation: Instituto de Matemática y Física, Universidad de Talca, Casilla 721, Talca, Chile
- MR Author ID: 902507
- Email: aliendo@utalca.cl
- Pedro Montero
- Affiliation: Departamento de Matemáticas, Universidad Técnica Federico Santa María, Valparaíso, Chile
- MR Author ID: 1316113
- Email: pedro.montero@usm.cl
- Roberto Villaflor Loyola
- Affiliation: Departamento de Matemáticas, Universidad Técnica Federico Santa María, Valparaíso, Chile
- MR Author ID: 1324303
- ORCID: 0000-0002-8412-4312
- Email: roberto.villaflor@usm.cl
- Received by editor(s): June 12, 2023
- Received by editor(s) in revised form: November 21, 2023
- Published electronically: June 20, 2024
- Additional Notes: The second and third authors were partially supported by Fondecyt Projects 1231214 and 1240101. The fourth author was supported by the Fondecyt ANID postdoctoral grant 3210020 and Fondecyt Project 1240101.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 5483-5511
- MSC (2020): Primary 14C30, 14C34, 14J50, 14J70
- DOI: https://doi.org/10.1090/tran/9111
- MathSciNet review: 4771229