Slicing knots in definite $4$-manifolds
HTML articles powered by AMS MathViewer
- by Alexandra Kjuchukova, Allison N. Miller, Arunima Ray and Sümeyra Sakallı;
- Trans. Amer. Math. Soc. 377 (2024), 5905-5946
- DOI: https://doi.org/10.1090/tran/9151
- Published electronically: June 11, 2024
- HTML | PDF | Request permission
Abstract:
We study the $\mathbb {CP}^2$-slicing number of knots, i.e. the smallest $m\geq 0$ such that a knot $K\subseteq S^3$ bounds a properly embedded, null-homologous disk in a punctured connected sum $(\#^m\mathbb {CP}^2)^{\times }$. We find knots for which the smooth and topological $\mathbb {CP}^2$-slicing numbers are both finite, nonzero, and distinct. To do this, we give a lower bound on the smooth $\mathbb {CP}^2$-slicing number of a knot in terms of its double branched cover and an upper bound on the topological $\mathbb {CP}^2$-slicing number in terms of the Seifert form.References
- E. J. Brody, The topological classification of the lens spaces, Ann. of Math. (2) 71 (1960), 163–184. MR 116336, DOI 10.2307/1969884
- Kathryn Bryant, Slice implies mutant ribbon for odd 5-stranded pretzel knots, Algebr. Geom. Topol. 17 (2017), no. 6, 3621–3664. MR 3709656, DOI 10.2140/agt.2017.17.3621
- Gerhard Burde and Heiner Zieschang, Knots, 2nd ed., De Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter & Co., Berlin, 2003. MR 1959408
- A. J. Casson and C. McA. Gordon, Cobordism of classical knots, À la recherche de la topologie perdue, Progr. Math., vol. 62, Birkhäuser Boston, Boston, MA, 1986, pp. 181–199. With an appendix by P. M. Gilmer. MR 900252
- Tim D. Cochran and Peter D. Horn, Structure in the bipolar filtration of topologically slice knots, Algebr. Geom. Topol. 15 (2015), no. 1, 415–428. MR 3325742, DOI 10.2140/agt.2015.15.415
- Tim D. Cochran, Shelly Harvey, and Peter Horn, Filtering smooth concordance classes of topologically slice knots, Geom. Topol. 17 (2013), no. 4, 2103–2162. MR 3109864, DOI 10.2140/gt.2013.17.2103
- Jae Choon Cha and Min Hoon Kim, The bipolar filtration of topologically slice knots, Adv. Math. 388 (2021), Paper No. 107868, 32. MR 4283760, DOI 10.1016/j.aim.2021.107868
- T. D. Cochran and W. B. R. Lickorish, Unknotting information from $4$-manifolds, Trans. Amer. Math. Soc. 297 (1986), no. 1, 125–142. MR 849471, DOI 10.1090/S0002-9947-1986-0849471-4
- Anthony Conway and Matthias Nagel, Stably slice disks of links, J. Topol. 13 (2020), no. 3, 1261–1301. MR 4125756, DOI 10.1112/topo.12154
- J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford-New York-Toronto, Ont., 1970, pp. 329–358. MR 258014
- Sylvain E. Cappell and Julius L. Shaneson, Branched cyclic coverings, Knots, groups, and $3$-manifolds (Papers dedicated to the memory of R. H. Fox), Ann. of Math. Stud., No. 84, Princeton Univ. Press, Princeton, NJ, 1975, pp. 165–173. MR 380815
- Tim D. Cochran and Eamonn Tweedy, Positive links, Algebr. Geom. Topol. 14 (2014), no. 4, 2259–2298. MR 3331688, DOI 10.2140/agt.2014.14.2259
- S. K. Donaldson, The orientation of Yang-Mills moduli spaces and $4$-manifold topology, J. Differential Geom. 26 (1987), no. 3, 397–428. MR 910015, DOI 10.4310/jdg/1214441485
- Michael Freedman, Robert Gompf, Scott Morrison, and Kevin Walker, Man and machine thinking about the smooth 4-dimensional Poincaré conjecture, Quantum Topol. 1 (2010), no. 2, 171–208. MR 2657647, DOI 10.4171/QT/5
- Ralph H. Fox and John W. Milnor, Singularities of $2$-spheres in $4$-space and cobordism of knots, Osaka Math. J. 3 (1966), 257–267. MR 211392
- Michael H. Freedman and Frank Quinn, Topology of 4-manifolds, Princeton Mathematical Series, vol. 39, Princeton University Press, Princeton, NJ, 1990. MR 1201584
- Patrick M. Gilmer, Configurations of surfaces in $4$-manifolds, Trans. Amer. Math. Soc. 264 (1981), no. 2, 353–380. MR 603768, DOI 10.1090/S0002-9947-1981-0603768-7
- Joshua Greene and Stanislav Jabuka, The slice-ribbon conjecture for 3-stranded pretzel knots, Amer. J. Math. 133 (2011), no. 3, 555–580. MR 2808326, DOI 10.1353/ajm.2011.0022
- Robert E. Gompf and András I. Stipsicz, $4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. MR 1707327, DOI 10.1090/gsm/020
- Matthew Hedden, On knot Floer homology and cabling. II, Int. Math. Res. Not. IMRN 12 (2009), 2248–2274. MR 2511910, DOI 10.1093/imrn/rnp015
- Jim Hoste, A formula for Casson’s invariant, Trans. Amer. Math. Soc. 297 (1986), no. 2, 547–562. MR 854084, DOI 10.1090/S0002-9947-1986-0854084-4
- Craig Hodgson and J. H. Rubinstein, Involutions and isotopies of lens spaces, Knot theory and manifolds (Vancouver, B.C., 1983) Lecture Notes in Math., vol. 1144, Springer, Berlin, 1985, pp. 60–96. MR 823282, DOI 10.1007/BFb0075012
- Nobuo Iida, Anubhav Mukherjee, and Masaki Taniguchi, An adjunction inequality for the Bauer-Furuta type invariants, with applications to sliceness and $4$-manifold topology, arXiv:2102.02076 (2021).
- Kenan Ince, The untwisting number of a knot, Pacific J. Math. 283 (2016), no. 1, 139–156. MR 3513844, DOI 10.2140/pjm.2016.283.139
- Kenan Ince, Untwisting information from Heegaard Floer homology, Algebr. Geom. Topol. 17 (2017), no. 4, 2283–2306. MR 3685608, DOI 10.2140/agt.2017.17.2283
- Stanislav Jabuka, Beibei Liu, and Allison H. Moore, Knot graphs and Gromov hyperbolicity, Math. Z. 301 (2022), no. 1, 811–834. MR 4405669, DOI 10.1007/s00209-021-02918-0
- Hokuto Konno, Jin Miyazawa, and Masaki Taniguchi, Involutions, knots, and Floer K-theory, arXiv:2110.09258 (2021).
- Louis H. Kauffman and Laurence R. Taylor, Signature of links, Trans. Amer. Math. Soc. 216 (1976), 351–365. MR 388373, DOI 10.1090/S0002-9947-1976-0388373-0
- J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229–244. MR 246314, DOI 10.1007/BF02564525
- Lukas Lewark, Knots with high unknotting number relative to their genus, (version: 2017-11-08), 2017.
- Paolo Lisca, Lens spaces, rational balls and the ribbon conjecture, Geom. Topol. 11 (2007), 429–472. MR 2302495, DOI 10.2140/gt.2007.11.429
- Charles Livingston, The slicing number of a knot, Algebr. Geom. Topol. 2 (2002), 1051–1060. MR 1936979, DOI 10.2140/agt.2002.2.1051
- Charles Livingston, Null-homologous unknottings, Topology and geometry—a collection of essays dedicated to Vladimir G. Turaev, IRMA Lect. Math. Theor. Phys., vol. 33, Eur. Math. Soc., Zürich, [2021] ©2021, pp. 59–68. MR 4394501, DOI 10.4171/IRMA/33-1/3
- Duncan McCoy, Null-homologous twisting and the algebraic genus, 2019–20 MATRIX annals, MATRIX Book Ser., vol. 4, Springer, Cham, [2021] ©2021, pp. 147–165. MR 4294766
- Duncan McCoy, Gaps between consecutive untwisting numbers, Glasg. Math. J. 63 (2021), no. 1, 59–65. MR 4190070, DOI 10.1017/S0017089520000014
- Yves Mathieu and Michel Domergue, Chirurgies de Dehn de pente $\pm 1$ sur certains nœuds dans les $3$-variétés, Math. Ann. 280 (1988), no. 3, 501–508 (French). MR 936325, DOI 10.1007/BF01456339
- Allison N. Miller, The topological sliceness of 3-strand pretzel knots, Algebr. Geom. Topol. 17 (2017), no. 5, 3057–3079. MR 3704252, DOI 10.2140/agt.2017.17.3057
- A. N. Miller, Amphichiral knots with large 4-genus, Bull. Lond. Math. Soc. 54 (2022), no. 2, 624–634. MR 4453695, DOI 10.1112/blms.12588
- Ciprian Manolescu, Marco Marengon, and Lisa Piccirillo, Relative genus bounds in indefinite four-manifolds, arXiv:2012.12270 (2020).
- Ciprian Manolescu, Marco Marengon, Sucharit Sarkar, and Michael Willis, A generalization of Rasmussen’s invariant, with applications to surfaces in some four-manifolds, Duke Math. J. 172 (2023), no. 2, 231–311. MR 4541332, DOI 10.1215/00127094-2022-0039
- José M. Montesinos, Seifert manifolds that are ramified two-sheeted cyclic coverings, Bol. Soc. Mat. Mexicana (2) 18 (1973), 1–32 (Spanish). MR 341467
- Ciprian Manolescu and Lisa Piccirillo, From zero surgeries to candidates for exotic definite 4-manifolds, J. Lond. Math. Soc. (2) 108 (2023), no. 5, 2001–2036. MR 4668522, DOI 10.1112/jlms.12800
- Kunio Murasugi, On a certain numerical invariant of link types, Trans. Amer. Math. Soc. 117 (1965), 387–422. MR 171275, DOI 10.1090/S0002-9947-1965-0171275-5
- Walter D. Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), no. 2, 299–344. MR 632532, DOI 10.1090/S0002-9947-1981-0632532-8
- Matthias Nagel and Brendan Owens, Unlinking information from 4-manifolds, Bull. Lond. Math. Soc. 47 (2015), no. 6, 964–979. MR 3431577, DOI 10.1112/blms/bdv072
- Walter D. Neumann and Frank Raymond, Seifert manifolds, plumbing, $\mu$-invariant and orientation reversing maps, Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977) Lecture Notes in Math., vol. 664, Springer, Berlin-New York, 1978, pp. 163–196. MR 518415
- Peter Ozsváth and Zoltán Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003), 615–639. MR 2026543, DOI 10.2140/gt.2003.7.615
- Peter Ozsváth and Zoltán Szabó, On the Heegaard Floer homology of branched double-covers, Adv. Math. 194 (2005), no. 1, 1–33. MR 2141852, DOI 10.1016/j.aim.2004.05.008
- Brendan Owens and Sašo Strle, Immersed disks, slicing numbers and concordance unknotting numbers, Comm. Anal. Geom. 24 (2016), no. 5, 1107–1138. MR 3622316, DOI 10.4310/CAG.2016.v24.n5.a8
- Brendan Owens, Unknotting information from Heegaard Floer homology, Adv. Math. 217 (2008), no. 5, 2353–2376. MR 2388097, DOI 10.1016/j.aim.2007.10.006
- Brendan Owens, On slicing invariants of knots, Trans. Amer. Math. Soc. 362 (2010), no. 6, 3095–3106. MR 2592947, DOI 10.1090/S0002-9947-09-04904-6
- Jake Pichelmeyer, Genera of knots in the complex projective plane, J. Knot Theory Ramifications 29 (2020), no. 12, 2050081, 32. MR 4193876, DOI 10.1142/S0218216520500819
- Kurt Reidemeister, Homotopieringe und Linsenräume, Abh. Math. Sem. Univ. Hamburg 11 (1935), no. 1, 102–109 (German). MR 3069647, DOI 10.1007/BF02940717
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, vol. 7, Publish or Perish, Inc., Houston, TX, 1990. Corrected reprint of the 1976 original. MR 1277811
- Kouki Sato, Topologically slice knots that are not smoothly slice in any definite 4-manifold, Algebr. Geom. Topol. 18 (2018), no. 2, 827–837. MR 3773740, DOI 10.2140/agt.2018.18.827
- Horst Schubert, Knoten mit zwei Brücken, Math. Z. 65 (1956), 133–170 (German). MR 82104, DOI 10.1007/BF01473875
- J.-P. Serre, A course in arithmetic, Graduate Texts in Mathematics, No. 7, Springer-Verlag, New York-Heidelberg, 1973. Translated from the French. MR 344216, DOI 10.1007/978-1-4684-9884-4
- Alexander N. Shumakovitch, Rasmussen invariant, slice-Bennequin inequality, and sliceness of knots, J. Knot Theory Ramifications 16 (2007), no. 10, 1403–1412. MR 2384833, DOI 10.1142/S0218216507005889
- A. G. Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc. 66 (1969), 251–264. MR 248854, DOI 10.1017/s0305004100044947
- O. Ja. Viro, Positioning in codimension $2$, and the boundary, Uspehi Mat. Nauk 30 (1975), no. 1(181), 231–232 (Russian). MR 420641
- O. Ja. Viro, Nonprojecting isotopies and knots with homeomorphic coverings, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 66 (1976), 133–147, 207–208 (Russian, with English summary). Studies in topology, II. MR 451252
Bibliographic Information
- Alexandra Kjuchukova
- Affiliation: Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
- Email: akjuchuk@nd.edu
- Allison N. Miller
- Affiliation: Department of Mathematics & Statistics, Swarthmore College, 500 College Avenue, Swarthmore, Pennsylvania 19081
- MR Author ID: 999009
- Email: amille11@swarthmore.edu
- Arunima Ray
- Affiliation: Max-Planck-Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
- MR Author ID: 1039665
- ORCID: 0000-0002-5620-4139
- Email: aruray@mpim-bonn.mpg.de
- Sümeyra Sakallı
- Affiliation: Department of Mathematical Sciences, University of Arkansas, Fayetteville, Arkansas 72701
- Email: ssakalli@uark.edu
- Received by editor(s): December 23, 2022
- Received by editor(s) in revised form: November 10, 2023, and February 15, 2024
- Published electronically: June 11, 2024
- Additional Notes: The first author was partially supported by NSF grant DMS-2204349. The second author was supported by NSF grant DMS-1902880
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 5905-5946
- MSC (2020): Primary 57K10, 57N35, 57N70, 57R40
- DOI: https://doi.org/10.1090/tran/9151
- MathSciNet review: 4771240