Regularity of capillarity droplets with obstacle
HTML articles powered by AMS MathViewer
- by Guido De Philippis, Nicola Fusco and Massimiliano Morini;
- Trans. Amer. Math. Soc. 377 (2024), 5787-5835
- DOI: https://doi.org/10.1090/tran/9152
- Published electronically: April 24, 2024
- HTML | PDF | Request permission
Abstract:
In this paper we study the regularity properties of $\Lambda$-minimizers of the capillarity energy in a half space with the wet part constrained to be confined inside a given planar region. Applications to a model for nanowire growth are also provided.References
- Luigi Ambrosio, Nicola Fusco, and Diego Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. MR 1857292, DOI 10.1093/oso/9780198502456.001.0001
- Jaigyoung Choe, Mohammad Ghomi, and Manuel Ritoré, The relative isoperimetric inequality outside convex domains in $\textbf {R}^n$, Calc. Var. Partial Differential Equations 29 (2007), no. 4, 421–429. MR 2329803, DOI 10.1007/s00526-006-0027-z
- Jérémy Dalphin, Uniform ball property and existence of optimal shapes for a wide class of geometric functionals, Interfaces Free Bound. 20 (2018), no. 2, 211–260. MR 3827803, DOI 10.4171/IFB/401
- G. De Philippis and F. Maggi, Regularity of free boundaries in anisotropic capillarity problems and the validity of Young’s law, Arch. Ration. Mech. Anal. 216 (2015), no. 2, 473–568. MR 3317808, DOI 10.1007/s00205-014-0813-2
- Matias Gonzalo Delgadino and Francesco Maggi, Alexandrov’s theorem revisited, Anal. PDE 12 (2019), no. 6, 1613–1642. MR 3921314, DOI 10.2140/apde.2019.12.1613
- Frank Duzaar and Klaus Steffen, Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals, J. Reine Angew. Math. 546 (2002), 73–138. MR 1900994, DOI 10.1515/crll.2002.046
- Xavier Fernández-Real and Joaquim Serra, Regularity of minimal surfaces with lower-dimensional obstacles, J. Reine Angew. Math. 767 (2020), 37–75. MR 4160302, DOI 10.1515/crelle-2019-0035
- Robert Finn, Equilibrium capillary surfaces, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 284, Springer-Verlag, New York, 1986. MR 816345, DOI 10.1007/978-1-4613-8584-4
- Matteo Focardi and Emanuele Spadaro, How a minimal surface leaves a thin obstacle, Ann. Inst. H. Poincaré C Anal. Non Linéaire 37 (2020), no. 4, 1017–1046. MR 4104833, DOI 10.1016/j.anihpc.2020.02.005
- Irene Fonseca, Nicola Fusco, Giovanni Leoni, and Massimiliano Morini, Global and local energy minimizers for a nanowire growth model, Ann. Inst. H. Poincaré C Anal. Non Linéaire 40 (2023), no. 4, 919–957. MR 4620336, DOI 10.4171/aihpc/54
- N. Fusco and M. Morini, Total positive curvature and the equality case in the relative isoperimetric inequality outside convex domains, Calc. Var. Partial Differential Equations 62 (2023), no. 3, Paper No. 102, 32. MR 4550406, DOI 10.1007/s00526-023-02438-1
- Nestor Guillen, Optimal regularity for the Signorini problem, Calc. Var. Partial Differential Equations 36 (2009), no. 4, 533–546. MR 2558329, DOI 10.1007/s00526-009-0242-5
- P. Krogstrup, S. Curiotto, E. Johnson, M. Aagesen, J. Nygård, and D. Chatain, Impact of the liquid phase shape on the structure of III-V nanowires, Phys. Rev. Lett. 106 (2011), 125505.
- Francesco Maggi, Sets of finite perimeter and geometric variational problems, Cambridge Studies in Advanced Mathematics, vol. 135, Cambridge University Press, Cambridge, 2012. An introduction to geometric measure theory. MR 2976521, DOI 10.1017/CBO9781139108133
- Emmanouil Milakis and Luis Silvestre, Regularity for the nonlinear Signorini problem, Adv. Math. 217 (2008), no. 3, 1301–1312. MR 2383900, DOI 10.1016/j.aim.2007.08.009
- Maria Giovanna Mora and Massimiliano Morini, Functionals depending on curvatures with constraints, Rend. Sem. Mat. Univ. Padova 104 (2000), 173–199. MR 1809356
- David Joseph Allyn Richardson, VARIATIONAL PROBLEMS WITH THIN OBSTACLES, ProQuest LLC, Ann Arbor, MI, 1978. Thesis (Ph.D.)–The University of British Columbia (Canada). MR 2628343
- Ovidiu Savin, Small perturbation solutions for elliptic equations, Comm. Partial Differential Equations 32 (2007), no. 4-6, 557–578. MR 2334822, DOI 10.1080/03605300500394405
- Leon Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University, Centre for Mathematical Analysis, Canberra, 1983. MR 756417
- Jean E. Taylor, Boundary regularity for solutions to various capillarity and free boundary problems, Comm. Partial Differential Equations 2 (1977), no. 4, 323–357. MR 487721, DOI 10.1080/03605307708820033
Bibliographic Information
- Guido De Philippis
- Affiliation: Courant Institute of Mathematical Sciences, New York University, New York, New York
- MR Author ID: 876943
- ORCID: 0000-0002-0446-6268
- Email: guido@cims.nyu.edu
- Nicola Fusco
- Affiliation: Dipartimento di Matematica e Applicazioni, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- MR Author ID: 70200
- ORCID: 0000-0001-8215-8351
- Email: n.fusco@unina.it
- Massimiliano Morini
- Affiliation: Dipartimento di Scienze Matematiche Fisiche e Informatiche, Università degli Studi di Parma, Parma, Italy
- MR Author ID: 661260
- Email: massimiliano.morini@unipr.it
- Received by editor(s): December 30, 2022
- Received by editor(s) in revised form: January 30, 2024
- Published electronically: April 24, 2024
- Additional Notes: The work of the first author was partially supported by the NSF grant DMS 2055686 and by the Simons Foundation. The work of the second author was supported by the PRIN project 2017TEXA3H. The third author was supported by the University of Parma FIL grant “Regularity, non-linear potential theory and related topics”.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 5787-5835
- MSC (2020): Primary 49Q20, 49Q05, 76B45
- DOI: https://doi.org/10.1090/tran/9152
- MathSciNet review: 4771237