Infinitesimal maximal symmetry and Ricci soliton solvmanifolds
HTML articles powered by AMS MathViewer
- by Carolyn S. Gordon and Michael R. Jablonski;
- Trans. Amer. Math. Soc. 377 (2024), 5673-5704
- DOI: https://doi.org/10.1090/tran/9157
- Published electronically: June 13, 2024
- HTML | PDF | Request permission
Abstract:
This work addresses the questions: (i) Among all left-invariant Riemannian metrics on a given Lie group, is there any whose isometry group or isometry algebra contains that of all others? (ii) Do expanding left-invariant Ricci solitons exhibit such maximal symmetry? Question (i) is addressed both for semisimple and for solvable Lie groups. Building on previous work of the authors on Einstein metrics, a complete answer is given to (ii): expanding homogeneous Ricci solitons have maximal isometry algebras although not always maximal isometry groups.
As a consequence of the tools developed to address these questions, partial results of Böhm, Lafuente, and Lauret are extended to show that left-invariant Ricci solitons on solvable Lie groups are unique up to scaling and isometry.
References
- Romina M. Arroyo and Ramiro A. Lafuente, The Alekseevskii conjecture in low dimensions, Math. Ann. 367 (2017), no. 1-2, 283–309. MR 3606442, DOI 10.1007/s00208-016-1386-1
- D. V. Alekseevskiĭ, Homogeneous Riemannian spaces of negative curvature, Mat. Sb. (N.S.) 96(138) (1975), 93–117, 168 (Russian). MR 362145
- Christoph Böhm and Ramiro A. Lafuente, The Ricci flow on solvmanifolds of real type, Adv. Math. 352 (2019), 516–540. MR 3964154, DOI 10.1016/j.aim.2019.06.014
- Christoph Böhm and Ramiro A. Lafuente, Homogeneous Einstein metrics on Euclidean spaces are Einstein solvmanifolds, Geom. Topol. 26 (2022), no. 2, 899–936. MR 4444271, DOI 10.2140/gt.2022.26.899
- Christoph Böhm and Ramiro A. Lafuente, Non-compact Einstein manifolds with symmetry, J. Amer. Math. Soc. 36 (2023), no. 3, 591–651. MR 4583772, DOI 10.1090/jams/1022
- Jonathan Epstein and Michael Jablonski, Maximal symmetry and solvmanifolds, 2023, In progress.
- Carolyn S. Gordon and Michael R. Jablonski, Einstein solvmanifolds have maximal symmetry, J. Differential Geom. 111 (2019), no. 1, 1–38. MR 3909903, DOI 10.4310/jdg/1547607686
- Carolyn Gordon, Transitive Riemannian isometry groups with nilpotent radicals, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 2, vi, 193–204 (English, with French summary). MR 617247, DOI 10.5802/aif.835
- Carolyn S. Gordon and Edward N. Wilson, The fine structure of transitive Riemannian isometry groups. I, Trans. Amer. Math. Soc. 289 (1985), no. 1, 367–380. MR 779070, DOI 10.1090/S0002-9947-1985-0779070-3
- Carolyn S. Gordon and Edward N. Wilson, Isometry groups of Riemannian solvmanifolds, Trans. Amer. Math. Soc. 307 (1988), no. 1, 245–269. MR 936815, DOI 10.1090/S0002-9947-1988-0936815-X
- Jens Heber, Noncompact homogeneous Einstein spaces, Invent. Math. 133 (1998), no. 2, 279–352. MR 1632782, DOI 10.1007/s002220050247
- Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, vol. 34, American Mathematical Society, Providence, RI, 2001. Corrected reprint of the 1978 original. MR 1834454, DOI 10.1090/gsm/034
- Michael Jablonski, Concerning the existence of Einstein and Ricci soliton metrics on solvable Lie groups, Geom. Topol. 15 (2011), no. 2, 735–764. MR 2800365, DOI 10.2140/gt.2011.15.735
- Michael Jablonski, Homogeneous Ricci solitons are algebraic, Geom. Topol. 18 (2014), no. 4, 2477–2486. MR 3268781, DOI 10.2140/gt.2014.18.2477
- Michael Jablonski, Homogeneous Ricci solitons, J. Reine Angew. Math. 699 (2015), 159–182. MR 3305924, DOI 10.1515/crelle-2013-0044
- Michael Jablonski, Strongly solvable spaces, Duke Math. J. 164 (2015), no. 2, 361–402. MR 3306558, DOI 10.1215/00127094-2861277
- Michael Jablonski, Maximal symmetry and unimodular solvmanifolds, Pacific J. Math. 298 (2019), no. 2, 417–427. MR 3936023, DOI 10.2140/pjm.2019.298.417
- Michael Jablonski, Survey: homogeneous Einstein manifolds, Rev. Un. Mat. Argentina 64 (2023), no. 2, 461–485.
- Michael Jablonski and Peter Petersen, A step towards the Alekseevskii conjecture, Math. Ann. 368 (2017), no. 1-2, 197–212. MR 3651571, DOI 10.1007/s00208-016-1429-7
- Jorge Lauret, Ricci soliton homogeneous nilmanifolds, Math. Ann. 319 (2001), no. 4, 715–733. MR 1825405, DOI 10.1007/PL00004456
- Jorge Lauret, Einstein solvmanifolds are standard, Ann. of Math. (2) 172 (2010), no. 3, 1859–1877. MR 2726101, DOI 10.4007/annals.2010.172.1859
- Jorge Lauret, Ricci soliton solvmanifolds, J. Reine Angew. Math. 650 (2011), 1–21. MR 2770554, DOI 10.1515/CRELLE.2011.001
- Ramiro Lafuente and Jorge Lauret, Structure of homogeneous Ricci solitons and the Alekseevskii conjecture, J. Differential Geom. 98 (2014), no. 2, 315–347. MR 3263520
- G. D. Mostow, Fully reducible subgroups of algebraic groups, Amer. J. Math. 78 (1956), 200–221. MR 92928, DOI 10.2307/2372490
- Y. Nikolayevsky, Einstein solvmanifolds and the pre-Einstein derivation, Trans. Amer. Math. Soc. 363 (2011), no. 8, 3935–3958. MR 2792974, DOI 10.1090/S0002-9947-2011-05045-2
- Hideki Ozeki, On a transitive transformation group of a compact group manifold, Osaka Math. J. 14 (1977), no. 3, 519–531. MR 461377
- Peter Petersen and William Wylie, On gradient Ricci solitons with symmetry, Proc. Amer. Math. Soc. 137 (2009), no. 6, 2085–2092. MR 2480290, DOI 10.1090/S0002-9939-09-09723-8
- Cynthia Will, The space of solvsolitons in low dimensions, Ann. Global Anal. Geom. 40 (2011), no. 3, 291–309. MR 2831460, DOI 10.1007/s10455-011-9258-0
Bibliographic Information
- Carolyn S. Gordon
- Affiliation: Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755-1808
- MR Author ID: 75430
- ORCID: 0000-0001-6626-631X
- Email: carolyn.s.gordon@dartmouth.edu
- Michael R. Jablonski
- Affiliation: Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019-3103
- MR Author ID: 726873
- Email: mjablonski@math.ou.edu
- Received by editor(s): April 27, 2023
- Received by editor(s) in revised form: January 22, 2024
- Published electronically: June 13, 2024
- Additional Notes: The research of the second author was partially supported by National Science Foundation grant DMS-1906351
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 5673-5704
- MSC (2020): Primary 53C25, 53C30, 22E25
- DOI: https://doi.org/10.1090/tran/9157
- MathSciNet review: 4771234
Dedicated: Dedicated to the memory of Joseph A. Wolf