Equivariant $3$-manifolds with positive scalar curvature
HTML articles powered by AMS MathViewer
- by Tsz-Kiu Aaron Chow and Yangyang Li;
- Trans. Amer. Math. Soc. 377 (2024), 5993-6020
- DOI: https://doi.org/10.1090/tran/9181
- Published electronically: June 13, 2024
- HTML | PDF
Abstract:
In this paper, for any compact Lie group $G$, we show that the space of $G$-equivariant Riemannian metrics with positive scalar curvature (PSC) on any closed three-manifold is either empty or contractible. In particular, we prove the generalized Smale conjecture for spherical three-orbifolds. Moreover, for connected $G$, we make a classification of all PSC $G$-equivariant three-manifolds.References
- Andrey V. Alekseevsky and Dmitry V. Alekseevsky, Riemannian $G$-manifold with one-dimensional orbit space, Ann. Global Anal. Geom. 11 (1993), no. 3, 197–211. MR 1237453, DOI 10.1007/BF00773366
- Kouhei Asano, Homeomorphisms of prism manifolds, Yokohama Math. J. 26 (1978), no. 1, 19–25. MR 524878
- Laurent Bessières, Gérard Besson, Sylvain Maillot, and Fernando C. Marques, Deforming 3-manifolds of bounded geometry and uniformly positive scalar curvature, J. Eur. Math. Soc. (JEMS) 23 (2021), no. 1, 153–184. MR 4186465, DOI 10.4171/jems/1008
- Simon Brendle, Panagiota Daskalopoulos, and Natasa Sesum, Uniqueness of compact ancient solutions to three-dimensional Ricci flow, Invent. Math. 226 (2021), no. 2, 579–651. MR 4323639, DOI 10.1007/s00222-021-01054-0
- Richard H. Bamler and Bruce Kleiner, Ricci flow and contractibility of spaces of metrics, Preprint, arXiv:1909.08710, 2019.
- Richard H. Bamler and Bruce Kleiner, Uniqueness and stability of Ricci flow through singularities, Acta Math. 228 (2022), no. 1, 1–215. MR 4448680, DOI 10.4310/acta.2022.v228.n1.a1
- Richard H. Bamler and Bruce Kleiner, Ricci flow and diffeomorphism groups of 3-manifolds, J. Amer. Math. Soc. 36 (2023), no. 2, 563–589. MR 4536904, DOI 10.1090/jams/1003
- Michel Boileau and Jean-Pierre Otal, Scindements de Heegaard et groupe des homéotopies des petites variétés de Seifert, Invent. Math. 106 (1991), no. 1, 85–107 (French). MR 1123375, DOI 10.1007/BF01243906
- Francis Bonahon, Difféotopies des espaces lenticulaires, Topology 22 (1983), no. 3, 305–314 (French). MR 710104, DOI 10.1016/0040-9383(83)90016-2
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 413144
- Simon Brendle, Ancient solutions to the Ricci flow in dimension 3, Acta Math. 225 (2020), no. 1, 1–102. MR 4176064, DOI 10.4310/acta.2020.v225.n1.a1
- Jean Cerf, La nullité de $\pi _{0}(\textrm {Diff}S^{3}$. 1. Position du problème, Séminaire Henri Cartan, 1962/63, École Norm. Sup., Paris, 1964, pp. Exp. 9-10, 27 (French). MR 198484
- Jean Cerf, La nullité de $\pi _{0}(\textrm {Diff}\,S^{3}$. 2. Espaces fonctionnels liés aux décompositions d’une sphěre plongée dans R3, Séminaire Henri Cartan, 1962/63, École Norm. Sup., Paris, 1964, pp. Exp. 20, 29 (French). MR 198485
- Jean Cerf, La nullité de $\pi _{0}(\textrm {Diff}S^{3}$. 3. Construction d’une section pour le revêtement ${\cal R}$, Séminaire Henri Cartan, 1962/63, École Norm. Sup., Paris, 1964, pp. Exp. 21, 25 (French). MR 198486
- Jean Cerf, La nullité de $\pi _{0}(\textrm {Diff}S^{3}$. Théorèmes de fibration des espaces de plongements. Applications, Séminaire Henri Cartan, 1962/63, École Norm. Sup., Paris, 1964, pp. Exp. 8, 13 (French). MR 198483
- Jean Cerf, Sur les difféomorphismes de la sphère de dimension trois $(\Gamma _{4}=0)$, Lecture Notes in Mathematics, No. 53, Springer-Verlag, Berlin-New York, 1968 (French). MR 229250, DOI 10.1007/BFb0060395
- Alessandro Carlotto and Chao Li, Constrained deformations of positive scalar curvature metrics, Preprint, arXiv:1903.11772, 2019.
- Alessandro Carlotto and Chao Li, Constrained deformations of positive scalar curvature metrics, II, Comm. Pure Appl. Math. 77 (2024), no. 1, 795–862. MR 4666636, DOI 10.1002/cpa.22153
- Sylvain E. Cappell and Julius L. Shaneson, A counterexample on the oozing problem for closed manifolds, Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978) Lecture Notes in Math., vol. 763, Springer, Berlin, 1979, pp. 627–634. MR 561242
- W. D. Curtis, The automorphism group of a compact group action, Trans. Amer. Math. Soc. 203 (1975), 45–54. MR 368066, DOI 10.1090/S0002-9947-1975-0368066-5
- G. de Rham, Reidemeister’s torsion invariant and rotations of $S^n$, Differential Analysis, Bombay Colloq., 1964, Tata Inst. Fund. Res., Bombay, 1964, pp. 27–36. MR 190945
- Rudolf Fritsch and Renzo A. Piccinini, Cellular structures in topology, Cambridge Studies in Advanced Mathematics, vol. 19, Cambridge University Press, Cambridge, 1990. MR 1074175, DOI 10.1017/CBO9780511983948
- Mikhael Gromov and H. Blaine Lawson Jr., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 111 (1980), no. 3, 423–434. MR 577131, DOI 10.2307/1971103
- Mikhael Gromov and H. Blaine Lawson Jr., Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Études Sci. Publ. Math. 58 (1983), 83–196 (1984). MR 720933, DOI 10.1007/BF02953774
- Allen E. Hatcher, A proof of the Smale conjecture, $\textrm {Diff}(S^{3})\simeq \textrm {O}(4)$, Ann. of Math. (2) 117 (1983), no. 3, 553–607. MR 701256, DOI 10.2307/2007035
- Sungbok Hong, John Kalliongis, Darryl McCullough, and J. Hyam Rubinstein, Diffeomorphisms of elliptic 3-manifolds, Lecture Notes in Mathematics, vol. 2055, Springer, Heidelberg, 2012. MR 2976322, DOI 10.1007/978-3-642-31564-0
- Sven Hirsch and Martin Lesourd, On the moduli space of asymptotically flat manifolds with boundary and the constraint equations, Preprint, arXiv:1911.02687, 2019.
- Sze-tsen Hu, Theory of retracts, Wayne State University Press, Detroit, MI, 1965. MR 181977
- N. V. Ivanov, Homotopy of spaces of diffeomorphisms of some three-dimensional manifolds, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 122 (1982), 72–103, 164–165 (Russian, with English summary). Studies in topology, IV. MR 661467
- Bruce Kleiner and John Lott, Singular Ricci flows I, Acta Math. 219 (2017), no. 1, 65–134. MR 3765659, DOI 10.4310/ACTA.2017.v219.n1.a4
- Fernando Codá Marques, Deforming three-manifolds with positive scalar curvature, Ann. of Math. (2) 176 (2012), no. 2, 815–863. MR 2950765, DOI 10.4007/annals.2012.176.2.3
- John Milnor, On spaces having the homotopy type of a $\textrm {CW}$-complex, Trans. Amer. Math. Soc. 90 (1959), 272–280. MR 100267, DOI 10.1090/S0002-9947-1959-0100267-4
- Paul S. Mostert, Errata, “On a compact Lie group acting on a manifold”, Ann. of Math. (2) 66 (1957), 589. MR 95897, DOI 10.2307/1969911
- Paul S. Mostert, On a compact Lie group acting on a manifold, Ann. of Math. (2) 65 (1957), 447–455. MR 85460, DOI 10.2307/1970056
- Sibe Mardešić and Jack Segal, Shape theory, North-Holland Mathematical Library, vol. 26, North-Holland Publishing Co., Amsterdam-New York, 1982. The inverse system approach. MR 676973
- Mattia Mecchia and Andrea Seppi, Isometry groups and mapping class groups of spherical 3-orbifolds, Math. Z. 292 (2019), no. 3-4, 1291–1314. MR 3980293, DOI 10.1007/s00209-018-2166-2
- Walter D. Neumann, $3$-dimensional $G$-manifolds with $2$-dimensional orbits, Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer-Verlag New York, Inc., New York, 1968, pp. 220–222. MR 245043
- Peter Orlik and Frank Raymond, Actions of $\textrm {SO}(2)$ on 3-manifolds, Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer-Verlag New York, Inc., New York, 1968, pp. 297–318. MR 263112
- Richard S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1–16. MR 189028, DOI 10.1016/0040-9383(66)90002-4
- Grisha Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, Preprint, arXiv:math/0307245, 2003.
- Peter Petersen, Riemannian geometry, 3rd ed., Graduate Texts in Mathematics, vol. 171, Springer, Cham, 2016. MR 3469435, DOI 10.1007/978-3-319-26654-1
- J. H. Rubinstein and J. S. Birman, One-sided Heegaard splittings and homeotopy groups of some $3$-manifolds, Proc. London Math. Soc. (3) 49 (1984), no. 3, 517–536. MR 759302, DOI 10.1112/plms/s3-49.3.517
- Mel Rothenberg, Torsion invariants and finite transformation groups, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976) Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc., Providence, RI, 1978, pp. 267–311. MR 520507
- J. H. Rubinstein, On $3$-manifolds that have finite fundamental group and contain Klein bottles, Trans. Amer. Math. Soc. 251 (1979), 129–137. MR 531972, DOI 10.1090/S0002-9947-1979-0531972-6
- J. H. C. Whitehead, Combinatorial homotopy. I, Bull. Amer. Math. Soc. 55 (1949), 213–245. MR 30759, DOI 10.1090/S0002-9904-1949-09175-9
- Joseph A. Wolf, Spaces of constant curvature, 6th ed., AMS Chelsea Publishing, Providence, RI, 2011. MR 2742530, DOI 10.1090/chel/372
Bibliographic Information
- Tsz-Kiu Aaron Chow
- Affiliation: Department of Mathematics, Columbia University, New York
- MR Author ID: 1437521
- ORCID: 0000-0002-3072-5104
- Email: achow@math.columbia.edu
- Yangyang Li
- Affiliation: Department of Mathematics, Princeton University, New Jersey
- Address at time of publication: Department of Mathematics, University of Chicago, Illinois
- MR Author ID: 1539523
- ORCID: 0000-0003-3594-9825
- Email: yl15@math.princeton.edu
- Received by editor(s): March 3, 2022
- Received by editor(s) in revised form: April 3, 2023, November 20, 2023, and March 21, 2024
- Published electronically: June 13, 2024
- © Copyright 2024 by the authors
- Journal: Trans. Amer. Math. Soc. 377 (2024), 5993-6020
- MSC (2020): Primary 53E20, 57R50, 58K70
- DOI: https://doi.org/10.1090/tran/9181
- MathSciNet review: 4771242