Endomorphisms of mapping tori
HTML articles powered by AMS MathViewer
- by Christoforos Neofytidis;
- Trans. Amer. Math. Soc. 377 (2024), 5289-5321
- DOI: https://doi.org/10.1090/tran/9203
- Published electronically: June 18, 2024
- HTML | PDF | Request permission
Abstract:
We classify in terms of Hopf-type properties mapping tori of residually finite Poincaré Duality groups with non-zero Euler characteristic. This generalises and gives a new proof of the analogous classification for fibered 3-manifolds. Various applications are given. In particular, we deduce that rigidity results for Gromov hyperbolic groups hold for the above mapping tori with trivial center.References
- Ian Agol, Criteria for virtual fibering, J. Topol. 1 (2008), no. 2, 269–284. MR 2399130, DOI 10.1112/jtopol/jtn003
- Ian Agol, The virtual Haken conjecture, Doc. Math. 18 (2013), 1045–1087. With an appendix by Agol, Daniel Groves, and Jason Manning. MR 3104553
- Emina Alibegović, Translation lengths in $\textrm {Out}(F_n)$, Geom. Dedicata 92 (2002), 87–93. Dedicated to John Stallings on the occasion of his 65th birthday. MR 1934012, DOI 10.1023/A:1019695003668
- Arthur Bartels and Wolfgang Lück, The Borel conjecture for hyperbolic and $\textrm {CAT}(0)$-groups, Ann. of Math. (2) 175 (2012), no. 2, 631–689. MR 2993750, DOI 10.4007/annals.2012.175.2.5
- Igor Belegradek, On co-Hopfian nilpotent groups, Bull. London Math. Soc. 35 (2003), no. 6, 805–811. MR 2000027, DOI 10.1112/S0024609303002480
- Mladen Bestvina and Mark Feighn, Stable actions of groups on real trees, Invent. Math. 121 (1995), no. 2, 287–321. MR 1346208, DOI 10.1007/BF01884300
- Gautam Bharali, Indranil Biswas, and Mahan Mj, The Fujiki class and positive degree maps, Complex Manifolds 2 (2015), no. 1, 11–15. MR 3333471, DOI 10.1515/coma-2015-0002
- Robert Bieri, Gruppen mit Poincaré-Dualität, Comment. Math. Helv. 47 (1972), 373–396 (German). MR 352290, DOI 10.1007/BF02566811
- Robert Bieri, Homological dimension of discrete groups, 2nd ed., Queen Mary College Mathematics Notes, Queen Mary College, Department of Pure Mathematics, London, 1981. MR 715779
- Brian H. Bowditch, Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998), no. 2, 145–186. MR 1638764, DOI 10.1007/BF02392898
- Martin R. Bridson, Daniel Groves, Jonathan A. Hillman, and Gaven J. Martin, Cofinitely Hopfian groups, open mappings and knot complements, Groups Geom. Dyn. 4 (2010), no. 4, 693–707. MR 2727659, DOI 10.4171/GGD/101
- Martin Bridson, Aimo Hinkkanen, and Gaven Martin, Quasiregular self-mappings of manifolds and word hyperbolic groups, Compos. Math. 143 (2007), no. 6, 1613–1622. MR 2371385, DOI 10.1112/S0010437X07003028
- Robert Brooks and William Goldman, Volumes in Seifert space, Duke Math. J. 51 (1984), no. 3, 529–545. MR 757951, DOI 10.1215/S0012-7094-84-05126-3
- Kenneth S. Brown, Euler characteristics of discrete groups and $G$-spaces, Invent. Math. 27 (1974), 229–264. MR 385007, DOI 10.1007/BF01390176
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956, DOI 10.1007/978-1-4684-9327-6
- James A. Carlson and Domingo Toledo, Harmonic mappings of Kähler manifolds to locally symmetric spaces, Inst. Hautes Études Sci. Publ. Math. 69 (1989), 173–201. MR 1019964, DOI 10.1007/BF02698844
- Andrew Casson and Douglas Jungreis, Convergence groups and Seifert fibered $3$-manifolds, Invent. Math. 118 (1994), no. 3, 441–456. MR 1296353, DOI 10.1007/BF01231540
- A. V. Černavskiĭ, Finite-to-one open mappings of manifolds, Mat. Sb. (N.S.) 65(107) (1964), 357–369 (Russian). MR 172256
- Diarmuid Crowley and Clara Löh, Functorial seminorms on singular homology and (in)flexible manifolds, Algebr. Geom. Topol. 15 (2015), no. 3, 1453–1499. MR 3361142, DOI 10.2140/agt.2015.15.1453
- Pierre Derbez, Yi Liu, Hongbin Sun, and Shicheng Wang, Volume of representations and mapping degree, Adv. Math. 351 (2019), 570–613. MR 3954039, DOI 10.1016/j.aim.2019.05.015
- Pierre Derbez and Shicheng Wang, Graph manifolds have virtually positive Seifert volume, J. Lond. Math. Soc. (2) 86 (2012), no. 1, 17–35. MR 2959293, DOI 10.1112/jlms/jdr085
- Beno Eckmann, Poincaré duality groups of dimension two are surface groups, Combinatorial group theory and topology (Alta, Utah, 1984) Ann. of Math. Stud., vol. 111, Princeton Univ. Press, Princeton, NJ, 1987, pp. 35–51. MR 895608
- Benson Farb, Alexander Lubotzky, and Yair Minsky, Rank-1 phenomena for mapping class groups, Duke Math. J. 106 (2001), no. 3, 581–597. MR 1813237, DOI 10.1215/S0012-7094-01-10636-4
- F. T. Farrell and L. E. Jones, Compact negatively curved manifolds (of dim $\neq 3, 4$) are topologically rigid, Proc. Nat. Acad. Sci. U.S.A. 86 (1989), no. 10, 3461–3463. MR 997635, DOI 10.1073/pnas.86.10.3461
- G. L. Fel′dman, The homological dimension of group algebras of solvable groups, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1225–1236 (Russian). MR 296168
- Roberto Frigerio, Jean-François Lafont, and Alessandro Sisto, Rigidity of high dimensional graph manifolds, Astérisque 372 (2015), xxi+177 (English, with English and French summaries). MR 3444648
- David Gabai, Convergence groups are Fuchsian groups, Ann. of Math. (2) 136 (1992), no. 3, 447–510. MR 1189862, DOI 10.2307/2946597
- Damien Gaboriau, Invariants $l^2$ de relations d’équivalence et de groupes, Publ. Math. Inst. Hautes Études Sci. 95 (2002), 93–150 (French). MR 1953191, DOI 10.1007/s102400200002
- S. M. Gersten and H. B. Short, Rational subgroups of biautomatic groups, Ann. of Math. (2) 134 (1991), no. 1, 125–158. MR 1114609, DOI 10.2307/2944334
- H. B. Griffiths, The fundamental group of a surface, and a theorem of Schreier, Acta Math. 110 (1963), 1–17. MR 153832, DOI 10.1007/BF02391853
- Michael Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982), 5–99 (1983). MR 686042
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- Misha Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, vol. 152, Birkhäuser Boston, Inc., Boston, MA, 1999. Based on the 1981 French original [ MR0682063 (85e:53051)]; With appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates. MR 1699320
- D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965), 840–856. MR 189027, DOI 10.2307/2373248
- Jean-Claude Hausmann, Geometric Hopfian and non-Hopfian situations, Geometry and topology (Athens, Ga., 1985) Lecture Notes in Pure and Appl. Math., vol. 105, Dekker, New York, 1987, pp. 157–166. MR 873292
- John Hempel, Residual finiteness for $3$-manifolds, Combinatorial group theory and topology (Alta, Utah, 1984) Ann. of Math. Stud., vol. 111, Princeton Univ. Press, Princeton, NJ, 1987, pp. 379–396. MR 895623
- Ronald Hirshon, Some properties of endomorphisms in residually finite groups, J. Austral. Math. Soc. Ser. A 24 (1977), no. 1, 117–120. MR 470080, DOI 10.1017/s1446788700020115
- G. Hochschild and J.-P. Serre, Cohomology of group extensions, Trans. Amer. Math. Soc. 74 (1953), 110–134. MR 52438, DOI 10.1090/S0002-9947-1953-0052438-8
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, NJ, 1941. MR 6493
- F. E. A. Johnson and C. T. C. Wall, On groups satisfying Poincaré duality, Ann. of Math. (2) 96 (1972), 592–598. MR 311796, DOI 10.2307/1970827
- Rob Kirby (ed.), Problems in low-dimensional topology, Geometric topology (Athens, GA, 1993) AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc., Providence, RI, 1997, pp. 35–473. MR 1470751, DOI 10.1090/amsip/002.2/02
- Jacqueline Lelong-Ferrand, Invariants conformes globaux sur les variétés riemanniennes, J. Differential Geometry 8 (1973), 487–510 (French). MR 346702
- André Lichnerowicz, Sur les transformations conformes d’une variété riemannienne compacte, C. R. Acad. Sci. Paris 259 (1964), 697–700 (Italian). MR 166734
- W. Lück, Approximating $L^2$-invariants by their finite-dimensional analogues, Geom. Funct. Anal. 4 (1994), no. 4, 455–481. MR 1280122, DOI 10.1007/BF01896404
- Wolfgang Lück, $L^2$-Betti numbers of mapping tori and groups, Topology 33 (1994), no. 2, 203–214. MR 1273782, DOI 10.1016/0040-9383(94)90011-6
- Wolfgang Lück, $L^2$-invariants: theory and applications to geometry and $K$-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 44, Springer-Verlag, Berlin, 2002. MR 1926649, DOI 10.1007/978-3-662-04687-6
- Wolfgang Lück, Survey on aspherical manifolds, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2010, pp. 53–82. MR 2648321, DOI 10.4171/077-1/4
- A. I. Mal’cev, On the faithful representation of infinite groups by matrices, Math. Stab. 8 (1940), 405–422.
- Gaven Martin, Volker Mayer, and Kirsi Peltonen, The generalized Lichnerowicz problem: uniformly quasiregular mappings and space forms, Proc. Amer. Math. Soc. 134 (2006), no. 7, 2091–2097. MR 2215779, DOI 10.1090/S0002-9939-06-08201-3
- Charles F. Miller III, On group-theoretic decision problems and their classification, Annals of Mathematics Studies, No. 68, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1971. MR 310044
- J. Milnor and W. Thurston, Characteristic numbers of $3$-manifolds, Enseign. Math. (2) 23 (1977), no. 3-4, 249–254. MR 500978
- I. Mineyev, Straightening and bounded cohomology of hyperbolic groups, Geom. Funct. Anal. 11 (2001), no. 4, 807–839. MR 1866802, DOI 10.1007/PL00001686
- Igor Mineyev, Bounded cohomology characterizes hyperbolic groups, Q. J. Math. 53 (2002), no. 1, 59–73. MR 1887670, DOI 10.1093/qjmath/53.1.59
- G. D. Mostow, Quasi-conformal mappings in $n$-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 53–104. MR 236383, DOI 10.1007/BF02684590
- Christoforos Neofytidis, Anosov diffeomorphisms of products II. Aspherical manifolds, J. Pure Appl. Algebra 224 (2020), no. 3, 1102–1114. MR 4009569, DOI 10.1016/j.jpaa.2019.07.005
- Christoforos Neofytidis, On a problem of Hopf for circle bundles over aspherical manifolds with hyperbolic fundamental groups, Algebr. Geom. Topol. 23 (2023), no. 7, 3205–3220. MR 4647675, DOI 10.2140/agt.2023.23.3205
- Christoforos Neofytidis, Ordering Thurston’s geometries by maps of nonzero degree, J. Topol. Anal. 10 (2018), no. 4, 853–872. MR 3881042, DOI 10.1142/S1793525318500280
- B. H. Neumann, On a problem of Hopf, J. London Math. Soc. 28 (1953), 351–353. MR 55996, DOI 10.1112/jlms/s1-28.3.351
- Walter D. Neumann, Commensurability and virtual fibration for graph manifolds, Topology 36 (1997), no. 2, 355–378. MR 1415593, DOI 10.1016/0040-9383(96)00014-6
- Jakob Nielsen, Surface transformation classes of algebraically finite type, Danske Vid. Selsk. Mat.-Fys. Medd. 21 (1944), no. 2, 89. MR 15791
- Frédéric Paulin, Outer automorphisms of hyperbolic groups and small actions on $\textbf {R}$-trees, Arboreal group theory (Berkeley, CA, 1988) Math. Sci. Res. Inst. Publ., vol. 19, Springer, New York, 1991, pp. 331–343. MR 1105339, DOI 10.1007/978-1-4612-3142-4_{1}2
- Yong Wu Rong, Degree one maps between geometric $3$-manifolds, Trans. Amer. Math. Soc. 332 (1992), no. 1, 411–436. MR 1052909, DOI 10.1090/S0002-9947-1992-1052909-6
- G. P. Scott, Finitely generated $3$-manifold groups are finitely presented, J. London Math. Soc. (2) 6 (1973), 437–440. MR 380763, DOI 10.1112/jlms/s2-6.3.437
- Z. Sela, Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank $1$ Lie groups. II, Geom. Funct. Anal. 7 (1997), no. 3, 561–593. MR 1466338, DOI 10.1007/s000390050019
- Z. Sela, Endomorphisms of hyperbolic groups. I. The Hopf property, Topology 38 (1999), no. 2, 301–321. MR 1660337, DOI 10.1016/S0040-9383(98)00015-9
- I. M. Singer, Some remarks on operator theory and index theory, $K$-theory and operator algebras (Proc. Conf., Univ. Georgia, Athens, Ga., 1975) Lecture Notes in Math., Vol. 575, Springer, Berlin-New York, 1977, pp. 128–138. MR 467848
- Stephen Smale, A note on open maps, Proc. Amer. Math. Soc. 8 (1957), 391–393. MR 86295, DOI 10.1090/S0002-9939-1957-0086295-X
- John Stallings, Coherence of $3$-manifold fundamental groups, Séminaire Bourbaki, Vol. 1975/76, 28ème année, Lecture Notes in Math., Vol. 567, Springer, Berlin-New York, 1977, pp. Exp. No. 481, pp. 167–173. MR 442915
- R. Strebel, A remark on subgroups of infinite index in Poincaré duality groups, Comment. Math. Helv. 52 (1977), no. 3, 317–324. MR 457588, DOI 10.1007/BF02567371
- William P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. MR 1435975, DOI 10.1515/9781400865321
- William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417–431. MR 956596, DOI 10.1090/S0273-0979-1988-15685-6
- William P. Thurston, A norm for the homology of $3$-manifolds, Mem. Amer. Math. Soc. 59 (1986), no. 339, i–vi and 99–130. MR 823443
- Pekka Tukia, On quasiconformal groups, J. Analyse Math. 46 (1986), 318–346. MR 861709, DOI 10.1007/BF02796595
- Jussi Väisälä, Discrete open mappings on manifolds, Ann. Acad. Sci. Fenn. Ser. A I 392 (1966), 10. MR 200928
- Friedhelm Waldhausen, On irreducible $3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR 224099, DOI 10.2307/1970594
- C. T. C. Wall, Rational Euler characteristics, Proc. Cambridge Philos. Soc. 57 (1961), 182–184. MR 122853, DOI 10.1017/s030500410003499x
- John J. Walsh, Light open and open mappings on manifolds. II, Trans. Amer. Math. Soc. 217 (1976), 271–284. MR 394674, DOI 10.1090/S0002-9947-1976-0394674-2
- Shi Cheng Wang, The existence of maps of nonzero degree between aspherical $3$-manifolds, Math. Z. 208 (1991), no. 1, 147–160. MR 1125739, DOI 10.1007/BF02571516
- Shi Cheng Wang, The $\pi _1$-injectivity of self-maps of nonzero degree on $3$-manifolds, Math. Ann. 297 (1993), no. 1, 171–189. MR 1238414, DOI 10.1007/BF01459495
Bibliographic Information
- Christoforos Neofytidis
- Affiliation: Department of Mathematics, Ohio State University, Columbus, Ohio 43210
- MR Author ID: 1020114
- Email: neofytidis.1@osu.edu
- Received by editor(s): June 6, 2022
- Published electronically: June 18, 2024
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 5289-5321
- MSC (2020): Primary 55M25
- DOI: https://doi.org/10.1090/tran/9203
- MathSciNet review: 4771223