Holomorphic curves in the $6$-pseudosphere and cyclic surfaces
HTML articles powered by AMS MathViewer
- by Brian Collier and Jérémy Toulisse;
- Trans. Amer. Math. Soc. 377 (2024), 6465-6514
- DOI: https://doi.org/10.1090/tran/9172
- Published electronically: June 21, 2024
- HTML | PDF | Request permission
Abstract:
The space $\mathbf {H}^{4,2}$ of vectors of norm $-1$ in $\mathbb {R}^{4,3}$ has a natural pseudo-Riemannian metric and a compatible almost complex structure. The group of automorphisms of both of these structures is the split real form $\mathsf {G}_2’$. In this paper we consider a class of holomorphic curves in $\mathbf {H}^{4,2}$ which we call alternating. We show that such curves admit a so called Frenet framing. Using this framing, we show that the space of alternating holomorphic curves which are equivariant with respect to a surface group is naturally parameterized by certain $\mathsf {G}_2’$-Higgs bundles. This leads to a holomorphic description of the moduli space as a fibration over Teichmüller space with a holomorphic action of the mapping class group. Using a generalization of Labourie’s cyclic surfaces, we then show that equivariant alternating holomorphic curves are infinitesimally rigid.References
- Jeffrey Adams and Olivier Taïbi, Galois and Cartan cohomology of real groups, Duke Math. J. 167 (2018), no. 6, 1057–1097. MR 3786301, DOI 10.1215/00127094-2017-0052
- Daniele Alessandrini and Brian Collier, The geometry of maximal components of the $\mathsf {PSp}(4, \Bbb R)$ character variety, Geom. Topol. 23 (2019), no. 3, 1251–1337. MR 3956893, DOI 10.2140/gt.2019.23.1251
- John C. Baez, The octonions, Bull. Amer. Math. Soc. (N.S.) 39 (2002), no. 2, 145–205. MR 1886087, DOI 10.1090/S0273-0979-01-00934-X
- David Baraglia, ${G}_2$ geometry and integrable systems, Eprint, arXiv:1002.1767, 2010.
- Robert L. Bryant, Submanifolds and special structures on the octonians, J. Differential Geometry 17 (1982), no. 2, 185–232. MR 664494
- Brian Collier, Maximal $\textrm {Sp}(4,\Bbb {R})$ surface group representations, minimal immersions and cyclic surfaces, Geom. Dedicata 180 (2016), 241–285. MR 3451467, DOI 10.1007/s10711-015-0101-9
- Brian Collier, Nicolas Tholozan, and Jérémy Toulisse, The geometry of maximal representations of surface groups into $\textrm {SO}_0(2,n)$, Duke Math. J. 168 (2019), no. 15, 2873–2949. MR 4017517, DOI 10.1215/00127094-2019-0052
- Brian Collier and Jérémy Toulisse, Generalized cyclic surfaces, In preparation, 2023.
- Kevin Corlette, Flat $G$-bundles with canonical metrics, J. Differential Geom. 28 (1988), no. 3, 361–382. MR 965220
- S. K. Donaldson, Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. (3) 55 (1987), no. 1, 127–131. MR 887285, DOI 10.1112/plms/s3-55.1.127
- Cristina Draper Fontanals, Notes on $G_2$: the Lie algebra and the Lie group, Differential Geom. Appl. 57 (2018), 23–74. MR 3758361, DOI 10.1016/j.difgeo.2017.10.011
- Jost-Hinrich Eschenburg and Theodoros Vlachos, Pseudoholomorphic curves in $\Bbb S^6$ and $\Bbb S^5$, Rev. Un. Mat. Argentina 60 (2019), no. 2, 517–537. MR 4049801, DOI 10.33044/revuma.v60n2a16
- Parker Evans, Polynomial almost complex curves in $\mathbb {S}^{2,4}$, arXiv e-prints, August 2022.
- Oscar García-Prada, Higgs bundles and higher Teichmüller spaces, Handbook of Teichmüller theory. Vol. VII, IRMA Lect. Math. Theor. Phys., vol. 30, Eur. Math. Soc., Zürich, [2020] ©2020, pp. 239–285. MR 4321175
- Oscar Garcia-Prada, Peter Gothen, and Ignasi Mundet i Riera, The Hitchin-Kobayashi correspondence, Higgs pairs and surface group representations, E-print, arXiv:0909.4487, September 2009.
- N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), no. 1, 59–126. MR 887284, DOI 10.1112/plms/s3-55.1.59
- N. J. Hitchin, Lie groups and Teichmüller space, Topology 31 (1992), no. 3, 449–473. MR 1174252, DOI 10.1016/0040-9383(92)90044-I
- Fanny Kassel, Geometric structures and representations of discrete groups, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 1115–1151. MR 3966802
- François Labourie, Cyclic surfaces and Hitchin components in rank 2, Ann. of Math. (2) 185 (2017), no. 1, 1–58. MR 3583351, DOI 10.4007/annals.2017.185.1.1
- François Labourie, Flat projective structures on surfaces and cubic holomorphic differentials, Pure Appl. Math. Q. 3 (2007), no. 4, Special Issue: In honor of Grigory Margulis., 1057–1099. MR 2402597, DOI 10.4310/PAMQ.2007.v3.n4.a10
- Qiongling Li and Takuro Mochizuki, Complete solutions of Toda equations and cyclic Higgs bundles over non-compact surfaces, arXiv:2010.05401, 2020.
- Qiongling Li and Takuro Mochizuki, Isolated singularities of Toda equations and cyclic Higgs bundles, arXiv:2010.06129, 2020.
- Qiongling Li and Takuro Mochizuki, Harmonic metrics of generically regular semisimple Higgs bundles on noncompact Riemann surfaces, Tunis. J. Math. 5 (2023), no. 4, 663–711. MR 4669154, DOI 10.2140/tunis.2023.5.663
- John Loftin, Flat metrics, cubic differentials and limits of projective holonomies, Geom. Dedicata 128 (2007), 97–106. MR 2350148, DOI 10.1007/s10711-007-9184-2
- Vladimir Marković, Non-uniqueness of minimal surfaces in a product of closed Riemann surfaces, Geom. Funct. Anal. 32 (2022), no. 1, 31–52. MR 4388760, DOI 10.1007/s00039-021-00590-4
- Vladimir Markovic, Nathaniel Sagman, and Peter Smillie, Unstable minimal surfaces in $\mathbb {R}^n$ and in products of hyperbolic surfaces. To appear in Commentarii Mathematici Helvetici arXiv:2206.02938, 2022.
- Charles B. Morrey Jr., On the analyticity of the solutions of analytic non-linear elliptic systems of partial differential equations. I. Analyticity in the interior, Amer. J. Math. 80 (1958), 198–218. MR 106336, DOI 10.2307/2372830
- Xin Nie, Cyclic Higgs bundles and minimal surfaces in pseudo-hyperbolic spaces, Adv. Math. 436 (2024), Paper No. 109402, 75. MR 4669325, DOI 10.1016/j.aim.2023.109402
- Nitin Nitsure, Moduli space of semistable pairs on a curve, Proc. London Math. Soc. (3) 62 (1991), no. 2, 275–300. MR 1085642, DOI 10.1112/plms/s3-62.2.275
- Maria Beatrice Pozzetti, Higher rank Teichmüller theories, Astérisque 422, Séminaire Bourbaki. Vol. 2018/2019. Exposés 1151–1165 (2020), Exp. No. 1159, 327–354. MR 4224639, DOI 10.24033/ast
- Nathaniel Sagman and Peter Smillie, Unstable minimal surfaces in symmetric spaces of non-compact type, arXiv:2208.04885, 2022.
- Carlos Simpson, Katz’s middle convolution algorithm, Pure Appl. Math. Q. 5 (2009), no. 2, Special Issue: In honor of Friedrich Hirzebruch., 781–852. MR 2508903, DOI 10.4310/PAMQ.2009.v5.n2.a8
- Carlos T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988), no. 4, 867–918. MR 944577, DOI 10.1090/S0894-0347-1988-0944577-9
- Carlos T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 47–129. MR 1307297, DOI 10.1007/BF02698887
- Carlos T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. II, Inst. Hautes Études Sci. Publ. Math. 80 (1994), 5–79 (1995). MR 1320603, DOI 10.1007/BF02698895
- Anna Wienhard, An invitation to higher Teichmüller theory, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures, World Sci. Publ., Hackensack, NJ, 2018, pp. 1013–1039. MR 3966798
Bibliographic Information
- Brian Collier
- Affiliation: University of California Riverside, California
- MR Author ID: 1001357
- ORCID: 0000-0002-8562-1855
- Email: brian.collier@ucr.edu
- Jérémy Toulisse
- Affiliation: Université Côte d’Azur, CNRS, LJAD, France
- Email: jeremy.toulisse@univ-cotedazur.fr
- Received by editor(s): May 25, 2023
- Received by editor(s) in revised form: February 14, 2024, and February 27, 2024
- Published electronically: June 21, 2024
- Additional Notes: The first author’s research was partially funded by NSF DMS grant 2103685.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 6465-6514
- MSC (2020): Primary 22E40, 32Q65, 57K20; Secondary 32L05
- DOI: https://doi.org/10.1090/tran/9172