Higher integrability for measures satisfying a PDE constraint
HTML articles powered by AMS MathViewer
- by Adolfo Arroyo-Rabasa, Guido De Philippis, Jonas Hirsch, Filip Rindler and Anna Skorobogatova;
- Trans. Amer. Math. Soc. 377 (2024), 6195-6224
- DOI: https://doi.org/10.1090/tran/9189
- Published electronically: June 25, 2024
- HTML | PDF | Request permission
Abstract:
We establish higher integrability estimates for constant-coefficient systems of linear PDEs \[ \mathcal {A} \mu = \sigma , \] where $\mu \in \mathcal {M}(\Omega ;V)$ and $\sigma \in \mathcal {M}(\Omega ;W)$ are vector measures and the polar $\frac {\mathrm {d}\mu }{\mathrm {d}|\mu |}$ is uniformly close to a convex cone of $V$ intersecting the wave cone of $\mathcal {A}$ only at the origin. More precisely, we prove local compensated compactness estimates of the form \[ \|\mu \|_{\mathrm {L}^p(\Omega ’)} \lesssim |\mu |(\Omega ) + |\sigma |(\Omega ), \qquad \Omega ’ \Subset \Omega . \] Here, the exponent $p$ belongs to the (optimal) range $1 \leq p < d/(d-k)$, $d$ is the dimension of $\Omega$, and $k$ is the order of $\mathcal {A}$. We also obtain the limiting case $p = d/(d-k)$ for canceling constant-rank operators. We consider applications to compensated compactness and applications to the theory of functions of bounded variation and bounded deformation.References
- David R. Adams and Lars Inge Hedberg, Function spaces and potential theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314, Springer-Verlag, Berlin, 1996. MR 1411441, DOI 10.1007/978-3-662-03282-4
- Giovanni Alberti and Andrea Marchese, On the differentiability of Lipschitz functions with respect to measures in the Euclidean space, Geom. Funct. Anal. 26 (2016), no. 1, 1–66. MR 3494485, DOI 10.1007/s00039-016-0354-y
- Luigi Ambrosio, Alessandra Coscia, and Gianni Dal Maso, Fine properties of functions with bounded deformation, Arch. Rational Mech. Anal. 139 (1997), no. 3, 201–238. MR 1480240, DOI 10.1007/s002050050051
- Luigi Ambrosio, Nicola Fusco, and Diego Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. MR 1857292, DOI 10.1093/oso/9780198502456.001.0001
- Adolfo Arroyo-Rabasa, Characterization of generalized young measures generated by $\mathcal A$-free measures, Arch. Ration. Mech. Anal. 242 (2021), no. 1, 235–325. MR 4302760, DOI 10.1007/s00205-021-01683-y
- A. Arroyo-Rabasa, Slicing and fine properties for functions with bounded $\mathcal A$-variation, arXiv:2009.13513, 2020.
- Adolfo Arroyo-Rabasa and José Simental, An elementary approach to the homological properties of constant-rank operators, C. R. Math. Acad. Sci. Paris 361 (2023), 45–63. MR 4538540, DOI 10.5802/crmath.388
- Kari Astala, Daniel Faraco, and László Székelyhidi Jr., Convex integration and the $L^p$ theory of elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008), no. 1, 1–50. MR 2413671
- Jean-François Babadjian, Flaviana Iurlano, and Filip Rindler, Shape optimization of light structures and the vanishing mass conjecture, Duke Math. J. 172 (2023), no. 1, 43–103. MR 4533717, DOI 10.1215/00127094-2022-0031
- David Bate and Tuomas Orponen, Quantitative absolute continuity of planar measures with two independent Alberti representations, Calc. Var. Partial Differential Equations 59 (2020), no. 2, Paper No. 72, 17. MR 4075296, DOI 10.1007/s00526-020-1714-x
- Guy Bouchitté, Optimization of light structures: the vanishing mass conjecture, Homogenization, 2001 (Naples), GAKUTO Internat. Ser. Math. Sci. Appl., vol. 18, Gakk\B{o}tosho, Tokyo, 2003, pp. 131–145. MR 2022556
- Pierre Bousquet and Jean Van Schaftingen, Hardy-Sobolev inequalities for vector fields and canceling linear differential operators, Indiana Univ. Math. J. 63 (2014), no. 5, 1419–1445. MR 3283556, DOI 10.1512/iumj.2014.63.5395
- Guido De Philippis, Andrea Marchese, and Filip Rindler, On a conjecture of Cheeger, Measure theory in non-smooth spaces, Partial Differ. Equ. Meas. Theory, De Gruyter Open, Warsaw, 2017, pp. 145–155. MR 3701738
- Guido De Philippis and Filip Rindler, On the structure of $\mathcal A$-free measures and applications, Ann. of Math. (2) 184 (2016), no. 3, 1017–1039. MR 3549629, DOI 10.4007/annals.2016.184.3.10
- Luigi De Rosa, Denis Serre, and Riccardo Tione, On the upper semicontinuity of a quasiconcave functional, J. Funct. Anal. 279 (2020), no. 7, 108660, 35. MR 4107812, DOI 10.1016/j.jfa.2020.108660
- Ronald J. DiPerna, Compensated compactness and general systems of conservation laws, Trans. Amer. Math. Soc. 292 (1985), no. 2, 383–420. MR 808729, DOI 10.1090/S0002-9947-1985-0808729-4
- Ronald J. DiPerna and Andrew J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys. 108 (1987), no. 4, 667–689. MR 877643, DOI 10.1007/BF01214424
- Irene Fonseca and Stefan Müller, $\scr A$-quasiconvexity, lower semicontinuity, and Young measures, SIAM J. Math. Anal. 30 (1999), no. 6, 1355–1390. MR 1718306, DOI 10.1137/S0036141098339885
- Loukas Grafakos, Classical Fourier analysis, 3rd ed., Graduate Texts in Mathematics, vol. 249, Springer, New York, 2014. MR 3243734, DOI 10.1007/978-1-4939-1194-3
- A. Guerra, B. Raiţă, and M. Schrecker, Compensation phenomena for concentration effects via nonlinear elliptic estimates, arXiv:2112.10657, 2022.
- Lars Hörmander, The analysis of linear partial differential operators. III, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1994. Pseudo-differential operators; Corrected reprint of the 1985 original. MR 1313500
- J. Kristensen and B. Raiţă, Oscillation and concentration in sequences of PDE constrained measures, arXiv:1912.09190, 2019.
- Jan Kristensen and Filip Rindler, Characterization of generalized gradient Young measures generated by sequences in $W^{1,1}$ and BV, Arch. Ration. Mech. Anal. 197 (2010), no. 2, 539–598. MR 2660519, DOI 10.1007/s00205-009-0287-9
- Giovanni Leoni, A first course in Sobolev spaces, Graduate Studies in Mathematics, vol. 105, American Mathematical Society, Providence, RI, 2009. MR 2527916, DOI 10.1090/gsm/105
- Stefan Müller, Variational models for microstructure and phase transitions, Calculus of variations and geometric evolution problems (Cetraro, 1996) Lecture Notes in Math., vol. 1713, Springer, Berlin, 1999, pp. 85–210. MR 1731640, DOI 10.1007/BFb0092670
- François Murat, Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), no. 3, 489–507 (French). MR 506997
- F. Murat, Compacité par compensation. II, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978) Pitagora, Bologna, 1979, pp. 245–256 (French). MR 533170
- François Murat, Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), no. 1, 69–102 (French). MR 616901
- Bogdan Raiţă, Critical $\textrm {L}^p$-differentiability of $\textrm {BV}^{\Bbb A}$-maps and canceling operators, Trans. Amer. Math. Soc. 372 (2019), no. 10, 7297–7326. MR 4024554, DOI 10.1090/tran/7878
- Bogdan Raiţă, Potentials for $\mathcal A$-quasiconvexity, Calc. Var. Partial Differential Equations 58 (2019), no. 3, Paper No. 105, 16. MR 3958799, DOI 10.1007/s00526-019-1544-x
- Filip Rindler, Calculus of variations, Universitext, Springer, Cham, 2018. MR 3821514, DOI 10.1007/978-3-319-77637-8
- Denis Serre, Divergence-free positive symmetric tensors and fluid dynamics, Ann. Inst. H. Poincaré C Anal. Non Linéaire 35 (2018), no. 5, 1209–1234. MR 3813963, DOI 10.1016/j.anihpc.2017.11.002
- Denis Serre, Compensated integrability. Applications to the Vlasov-Poisson equation and other models in mathematical physics, J. Math. Pures Appl. (9) 127 (2019), 67–88 (English, with English and French summaries). MR 3960138, DOI 10.1016/j.matpur.2018.06.025
- John R. Schulenberger and Calvin H. Wilcox, A coerciveness inequality for a class of nonelliptic operators of constant deficit, Ann. Mat. Pura Appl. (4) 92 (1972), 77–84. MR 316867, DOI 10.1007/BF02417937
- L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., vol. 39, Pitman, Boston, Mass.-London, 1979, pp. 136–212. MR 584398
- Luc Tartar, The compensated compactness method applied to systems of conservation laws, Systems of nonlinear partial differential equations (Oxford, 1982) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 111, Reidel, Dordrecht, 1983, pp. 263–285. MR 725524
- Luc Tartar, On mathematical tools for studying partial differential equations of continuum physics: $H$-measures and Young measures, Developments in partial differential equations and applications to mathematical physics (Ferrara, 1991) Plenum, New York, 1992, pp. 201–217. MR 1213932
- Roger Temam and Gilbert Strang, Functions of bounded deformation, Arch. Rational Mech. Anal. 75 (1980/81), no. 1, 7–21. MR 592100, DOI 10.1007/BF00284617
- Jean Van Schaftingen, Limiting Sobolev inequalities for vector fields and canceling linear differential operators, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 3, 877–921. MR 3085095, DOI 10.4171/JEMS/380
Bibliographic Information
- Adolfo Arroyo-Rabasa
- Affiliation: Institute of Applied Mathetmatics, University of Bonn, Bonn 53115, Germany
- MR Author ID: 1188403
- ORCID: 0000-0002-8329-1506
- Email: rabasa@iam.uni-bonn.de, adolforabasa@gmail.com
- Guido De Philippis
- Affiliation: Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, New York 10012
- MR Author ID: 876943
- ORCID: 0000-0002-0446-6268
- Email: guido@cims.nyu.edu
- Jonas Hirsch
- Affiliation: Mathematisches Institut, Universität Leipzig, Augustus Platz 10, D04109 Leipzig, Germany
- MR Author ID: 1179776
- ORCID: 0000-0003-2962-5963
- Email: hirsch@math.uni-leipzig.de
- Filip Rindler
- Affiliation: Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
- MR Author ID: 857689
- ORCID: 0000-0003-2126-3865
- Email: F.Rindler@warwick.ac.uk
- Anna Skorobogatova
- Affiliation: Department of Mathematics, Fine Hall, Princeton University, Washington Road, Princeton, New Jersey 08540
- MR Author ID: 1377626
- Email: as110@princeton.edu
- Received by editor(s): May 19, 2023
- Received by editor(s) in revised form: February 12, 2024
- Published electronically: June 25, 2024
- Additional Notes: The first, fourth, and fifth authors had received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programe, grant agreement No 757254 (SINGULARITY). The first author received funding by the European Union (ERC, ConFine, 101078057). The fifth author was further supported by the NSF through the grant FRG-1854147. The second author was partially supported by the NSF Grant DMS-2055686. The third author was partially supported by the German Science Foundation DFG in context of the Priority Program SPP 2026 “Geometry at Infinity”.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 6195-6224
- MSC (2020): Primary 35B45, 35J48, 35B99; Secondary 35H99, 46E35
- DOI: https://doi.org/10.1090/tran/9189