The positive-definite completion problem
HTML articles powered by AMS MathViewer
- by Kartik G. Waghmare and Victor M. Panaretos;
- Trans. Amer. Math. Soc. 377 (2024), 6549-6594
- DOI: https://doi.org/10.1090/tran/9194
- Published electronically: June 28, 2024
- HTML | PDF | Request permission
Abstract:
We study the positive-definite completion problem for kernels on a variety of domains and prove results concerning the existence, uniqueness, and characterization of solutions. In particular, we study a special solution called the canonical completion which is the reproducing kernel analogue of the determinant-maximizing completion known to exist for matrices. We establish several results concerning its existence and uniqueness, which include algebraic and variational characterizations. Notably, we prove the existence of a canonical completion for domains which are equivalent to the band containing the diagonal. This corresponds to the existence of a canonical extension in the context of the classical extension problem of positive-definite functions, which can be understood as the solution to an abstract Cauchy problem in a certain reproducing kernel Hilbert space.References
- A. P. Artjomenko, Hermitian positive functions and positive functionals, Dissertation, Odessa State University, Odessa, Ukraine, 1941.
- Charles R. Baker, Joint measures and cross-covariance operators, Trans. Amer. Math. Soc. 186 (1973), 273–289. MR 336795, DOI 10.1090/S0002-9947-1973-0336795-3
- Mihály Bakonyi and Hugo J. Woerdeman, Matrix completions, moments, and sums of Hermitian squares, Princeton University Press, Princeton, NJ, 2011. MR 2807419, DOI 10.1515/9781400840595
- Andrea Braides, $\Gamma$-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications, vol. 22, Oxford University Press, Oxford, 2002. MR 1968440, DOI 10.1093/acprof:oso/9780198507840.001.0001
- John Parker Burg, Maximum entropy spectral analysis, Stanford University, 1975.
- C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64 (1907), no. 1, 95–115 (German). MR 1511425, DOI 10.1007/BF01449883
- John B. Conway, A course in functional analysis, Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1985. MR 768926, DOI 10.1007/978-1-4757-3828-5
- Gianni Dal Maso, An introduction to $\Gamma$-convergence, Progress in Nonlinear Differential Equations and their Applications, vol. 8, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1201152, DOI 10.1007/978-1-4612-0327-8
- Edward Brian Davies, One-parameter semigroups, London Mathematical Society Monographs, vol. 15, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980. MR 591851
- Reinhard Diestel, Graph theory, 4th ed., Graduate Texts in Mathematics, vol. 173, Springer, Heidelberg, 2010. MR 2744811, DOI 10.1007/978-3-642-14279-6
- Harry Dym and Israel Gohberg, Extensions of band matrices with band inverses, Linear Algebra Appl. 36 (1981), 1–24. MR 604325, DOI 10.1016/0024-3795(81)90215-9
- Robert E. Edwards, Functional analysis: theory and applications, Courier Corporation, 2012.
- Yuli Eidelman, Vitali Milman, and Antonis Tsolomitis, Functional analysis, Graduate Studies in Mathematics, vol. 66, American Mathematical Society, Providence, RI, 2004. An introduction. MR 2067694, DOI 10.1090/gsm/066
- Klaus-Jochen Engel and Rainer Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194, Springer-Verlag, New York, 2000. With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt. MR 1721989
- I. Gohberg, M. A. Kaashoek, and H. J. Woerdeman, The band method for positive and contractive extension problems, J. Operator Theory 22 (1989), no. 1, 109–155. MR 1026078
- Robert Grone, Charles R. Johnson, Eduardo M. de Sá, and Henry Wolkowicz, Positive definite completions of partial Hermitian matrices, Linear Algebra Appl. 58 (1984), 109–124. MR 739282, DOI 10.1016/0024-3795(84)90207-6
- Charles R. Johnson (ed.), Matrix theory and applications, Proceedings of Symposia in Applied Mathematics, vol. 40, American Mathematical Society, Providence, RI, 1990. Lecture notes prepared for the American Mathematical Society Short Course held in Phoenix, Arizona, January 10–11, 1989; AMS Short Course Lecture Notes. MR 1059481, DOI 10.1090/psapm/040
- M. Kaltenbäck and H. Woracek, On extensions of Hermitian functions with a finite number of negative squares, J. Operator Theory 40 (1998), no. 1, 147–183. MR 1642542
- Uri Keich, Krein’s strings, the symmetric moment problem, and extending a real positive definite function, Comm. Pure Appl. Math. 52 (1999), no. 10, 1315–1334. MR 1699971, DOI 10.1002/(SICI)1097-0312(199910)52:10<1315::AID-CPA7>3.0.CO;2-O
- M. Krein, Sur le problème du prolongement des fonctions hermitiennes positives et continues, C. R. (Doklady) Acad. Sci. URSS (N.S.) 26 (1940), 17–22 (French). MR 4333
- Erwin Kreyszig, Introductory functional analysis with applications, John Wiley & Sons, New York-London-Sydney, 1978. MR 467220
- Lawrence Narici and Edward Beckenstein, Topological vector spaces, 2nd ed., Pure and Applied Mathematics (Boca Raton), vol. 296, CRC Press, Boca Raton, FL, 2011. MR 2723563
- Vern I. Paulsen and Mrinal Raghupathi, An introduction to the theory of reproducing kernel Hilbert spaces, Cambridge Studies in Advanced Mathematics, vol. 152, Cambridge University Press, Cambridge, 2016. MR 3526117, DOI 10.1017/CBO9781316219232
- Vern I. Paulsen, Stephen C. Power, and Roger R. Smith, Schur products and matrix completions, J. Funct. Anal. 85 (1989), no. 1, 151–178. MR 1005860, DOI 10.1016/0022-1236(89)90050-5
- Raymond A. Ryan, Introduction to tensor products of Banach spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 2002. MR 1888309, DOI 10.1007/978-1-4471-3903-4
- Zoltán Sasvári. The extension problem for positive definite functions. a short historical survey. In Operator Theory and Indefinite Inner Product Spaces: Presented on the occasion of the retirement of Heinz Langer in the Colloquium on Operator Theory, Vienna, March 2004, pages 365–379. Springer, 2006.
- Barry Simon, Notes on infinite determinants of Hilbert space operators, Advances in Math. 24 (1977), no. 3, 244–273. MR 482328, DOI 10.1016/0001-8708(77)90057-3
- Barry Simon, Trace ideals and their applications, 2nd ed., Mathematical Surveys and Monographs, vol. 120, American Mathematical Society, Providence, RI, 2005. MR 2154153, DOI 10.1090/surv/120
- François Treves. Topological vector spaces, distributions and kernels: Pure and Applied Mathematics, Vol. 25, volume 25. Elsevier, 2016.
- Kartik G. Waghmare and Victor M. Panaretos, The completion of covariance kernels, Ann. Statist. 50 (2022), no. 6, 3281–3306. MR 4524497, DOI 10.1214/22-aos2228
Bibliographic Information
- Kartik G. Waghmare
- Affiliation: Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Switzerland
- MR Author ID: 1539447
- ORCID: 0000-0003-0912-685X
- Email: kartik.waghmare@epfl.ch
- Victor M. Panaretos
- Affiliation: Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Switzerland
- MR Author ID: 800623
- ORCID: 0000-0002-2442-9907
- Email: victor.panaretos@epfl.ch
- Received by editor(s): October 12, 2023
- Received by editor(s) in revised form: March 20, 2024
- Published electronically: June 28, 2024
- Additional Notes: Research was supported by a Swiss National Science Foundation (SNSF) grant.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 6549-6594
- MSC (2020): Primary 47A57, 15A83, 46N30, 47B32
- DOI: https://doi.org/10.1090/tran/9194