Arithmetic degrees and Zariski dense orbits of cohomologically hyperbolic maps
HTML articles powered by AMS MathViewer
- by Yohsuke Matsuzawa and Long Wang;
- Trans. Amer. Math. Soc. 377 (2024), 6311-6340
- DOI: https://doi.org/10.1090/tran/9211
- Published electronically: June 25, 2024
- HTML | PDF | Request permission
Abstract:
A dominant rational self-map on a projective variety is called $p$-cohomologically hyperbolic if the $p$-th dynamical degree is strictly larger than other dynamical degrees. For such a map defined over $\overline {\mathbb {Q}}$, we study lower bounds of the arithmetic degrees, existence of points with Zariski dense orbit, and finiteness of preperiodic points. In particular, we prove that, if $f$ is an $1$-cohomologically hyperbolic map on a smooth projective variety, then (1) the arithmetic degree of a $\overline {\mathbb {Q}}$-point with generic $f$-orbit is equal to the first dynamical degree of $f$; and (2) there are $\overline {\mathbb {Q}}$-points with generic $f$-orbit. Applying our theorem to the recently constructed rational map with transcendental dynamical degree, we confirm that the arithmetic degree can be transcendental.References
- Ekaterina Amerik, Existence of non-preperiodic algebraic points for a rational self-map of infinite order, Math. Res. Lett. 18 (2011), no. 2, 251–256. MR 2784670, DOI 10.4310/MRL.2011.v18.n2.a5
- Jason Bell, Rahim Moosa, and Adam Topaz, Invariant hypersurfaces, J. Inst. Math. Jussieu 21 (2022), no. 2, 713–739. MR 4386827, DOI 10.1017/S1474748020000262
- Jason P. Bell, Jeffrey Diller, and Mattias Jonsson, A transcendental dynamical degree, Acta Math. 225 (2020), no. 2, 193–225. MR 4205407, DOI 10.4310/ACTA.2020.v225.n2.a1
- Jason P. Bell, Jeffrey Diller, Mattias Jonsson, and Holly Krieger, Birational maps with transcendental dynamical degree, Proc. Lond. Math. Soc. (3) 128 (2024), no. 1, Paper No. e12573, 47. MR 4687023, DOI 10.1112/plms.12573
- J. P. Bell, D. Ghioca, and T. J. Tucker, The dynamical Mordell-Lang problem for étale maps, Amer. J. Math. 132 (2010), no. 6, 1655–1675. MR 2766180, DOI 10.1353/ajm.2010.a404144
- Jason P. Bell, Dragos Ghioca, and Thomas J. Tucker, The dynamical Mordell-Lang problem for Noetherian spaces, Funct. Approx. Comment. Math. 53 (2015), no. 2, 313–328. MR 3435801, DOI 10.7169/facm/2015.53.2.7
- Jason P. Bell, Fei Hu, and Matthew Satriano, Height gap conjectures, $D$-finiteness, and a weak dynamical Mordell-Lang conjecture, Math. Ann. 378 (2020), no. 3-4, 971–992. MR 4163519, DOI 10.1007/s00208-020-02062-w
- Edward Bierstone and Pierre D. Milman, Functoriality in resolution of singularities, Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 609–639. MR 2426359, DOI 10.2977/prims/1210167338
- C. Bisi, J. D. Hauenstein, and T. T. Truong, Some interesting birational morphisms of smooth affine quadric $3$-folds, arXiv:2208.14327v2, 2022.
- Enrico Bombieri and Walter Gubler, Heights in Diophantine geometry, New Mathematical Monographs, vol. 4, Cambridge University Press, Cambridge, 2006. MR 2216774, DOI 10.1017/CBO9780511542879
- Serge Cantat, Invariant hypersurfaces in holomorphic dynamics, Math. Res. Lett. 17 (2010), no. 5, 833–841. MR 2727612, DOI 10.4310/MRL.2010.v17.n5.a3
- Chen, J.-A., Lin, H.-Y., and Oguiso, K. On the Kawaguchi–Silverman Conjecture for birational automorphisms of irregular varieties. arXiv:2204.09845v2 (2022).
- Dan Coman and Vincent Guedj, Invariant currents and dynamical Lelong numbers, J. Geom. Anal. 14 (2004), no. 2, 199–213. MR 2051683, DOI 10.1007/BF02922068
- Nguyen-Bac Dang, Degrees of iterates of rational maps on normal projective varieties, Proc. Lond. Math. Soc. (3) 121 (2020), no. 5, 1268–1310. MR 4133708, DOI 10.1112/plms.12366
- J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math. 123 (2001), no. 6, 1135–1169. MR 1867314, DOI 10.1353/ajm.2001.0038
- Charles Favre and Elizabeth Wulcan, Degree growth of monomial maps and McMullen’s polytope algebra, Indiana Univ. Math. J. 61 (2012), no. 2, 493–524. MR 3043585, DOI 10.1512/iumj.2012.61.4555
- Vincent Guedj, Ergodic properties of rational mappings with large topological degree, Ann. of Math. (2) 161 (2005), no. 3, 1589–1607. MR 2179389, DOI 10.4007/annals.2005.161.1589
- Vincent Guedj, Propriétés ergodiques des applications rationnelles, Quelques aspects des systèmes dynamiques polynomiaux, Panor. Synthèses, vol. 30, Soc. Math. France, Paris, 2010, pp. 97–202 (French, with English and French summaries). MR 2932434
- Vincent Guedj and Nessim Sibony, Dynamics of polynomial automorphisms of $\mathbf C^k$, Ark. Mat. 40 (2002), no. 2, 207–243. MR 1948064, DOI 10.1007/BF02384535
- Marc Hindry and Joseph H. Silverman, Diophantine geometry, Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000. An introduction. MR 1745599, DOI 10.1007/978-1-4612-1210-2
- Shigeru Iitaka, Algebraic geometry, North-Holland Mathematical Library, vol. 24, Springer-Verlag, New York-Berlin, 1982. An introduction to birational geometry of algebraic varieties; Graduate Texts in Mathematics, 76. MR 637060, DOI 10.1007/978-1-4613-8119-8
- J. Jia, T. Shibata, J. Xie, and D.-Q. Zhang, Endomorphisms of quasi-projective varieties–towards Zariski dense orbit and Kawaguchi-Silverman conjectures, To appear on Math. Res. Lett. arXiv:2104.05339, 2021.
- Mattias Jonsson and Paul Reschke, On the complex dynamics of birational surface maps defined over number fields, J. Reine Angew. Math. 744 (2018), 275–297. MR 3871447, DOI 10.1515/crelle-2015-0113
- Scott R. Kaschner, Rodrigo A. Pérez, and Roland K. W. Roeder, Examples of rational maps of $\Bbb C\Bbb P^2$ with equal dynamical degrees and no invariant foliation, Bull. Soc. Math. France 144 (2016), no. 2, 279–297 (English, with English and French summaries). MR 3499082, DOI 10.24033/bsmf.2714
- Shu Kawaguchi and Joseph H. Silverman, Dynamical canonical heights for Jordan blocks, arithmetic degrees of orbits, and nef canonical heights on abelian varieties, Trans. Amer. Math. Soc. 368 (2016), no. 7, 5009–5035. MR 3456169, DOI 10.1090/tran/6596
- Shu Kawaguchi and Joseph H. Silverman, On the dynamical and arithmetic degrees of rational self-maps of algebraic varieties, J. Reine Angew. Math. 713 (2016), 21–48. MR 3483624, DOI 10.1515/crelle-2014-0020
- Serge Lang, Fundamentals of Diophantine geometry, Springer-Verlag, New York, 1983. MR 715605, DOI 10.1007/978-1-4757-1810-2
- Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471, DOI 10.1007/978-3-642-18808-4
- John Lesieutre and Matthew Satriano, A rational map with infinitely many points of distinct arithmetic degrees, Ergodic Theory Dynam. Systems 40 (2020), no. 11, 3051–3055. MR 4157475, DOI 10.1017/etds.2019.30
- John Lesieutre and Matthew Satriano, Canonical heights on hyper-Kähler varieties and the Kawaguchi-Silverman conjecture, Int. Math. Res. Not. IMRN 10 (2021), 7677–7714. MR 4259157, DOI 10.1093/imrn/rnz067
- Jan-Li Lin, Pulling back cohomology classes and dynamical degrees of monomial maps, Bull. Soc. Math. France 140 (2012), no. 4, 533–549 (2013). MR 3059849, DOI 10.24033/bsmf.2635
- Yohsuke Matsuzawa, On upper bounds of arithmetic degrees, Amer. J. Math. 142 (2020), no. 6, 1797–1820. MR 4176545, DOI 10.1353/ajm.2020.0045
- Yohsuke Matsuzawa, Sheng Meng, Takahiro Shibata, and De-Qi Zhang, Non-density of points of small arithmetic degrees, J. Geom. Anal. 33 (2023), no. 4, Paper No. 112, 41. MR 4543765, DOI 10.1007/s12220-022-01156-y
- Yohsuke Matsuzawa, Kaoru Sano, and Takahiro Shibata, Arithmetic degrees and dynamical degrees of endomorphisms on surfaces, Algebra Number Theory 12 (2018), no. 7, 1635–1657. MR 3871505, DOI 10.2140/ant.2018.12.1635
- Keiji Oguiso and Tuyen Trung Truong, Explicit examples of rational and Calabi-Yau threefolds with primitive automorphisms of positive entropy, J. Math. Sci. Univ. Tokyo 22 (2015), no. 1, 361–385. MR 3329200
- Joseph H. Silverman, Dynamical degree, arithmetic entropy, and canonical heights for dominant rational self-maps of projective space, Ergodic Theory Dynam. Systems 34 (2014), no. 2, 647–678. MR 3233709, DOI 10.1017/etds.2012.144
- Tuyen Trung Truong, Relative dynamical degrees of correspondences over a field of arbitrary characteristic, J. Reine Angew. Math. 758 (2020), 139–182. MR 4048444, DOI 10.1515/crelle-2017-0052
- L. Wang, Periodic points and arithmetic degrees of certain rational self-maps, Journal of the Mathematical Society of Japan arXiv:2201.12750v4, 2023.
- J. Xie, The existence of Zariski dense orbits for endomorphisms of projective surfaces, Journal of the American Mathematical Society (2022). arXiv:1905.07021v3.
Bibliographic Information
- Yohsuke Matsuzawa
- Affiliation: Department of Mathematics, Graduate School of Science, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
- MR Author ID: 1263698
- Email: matsuzaway@omu.ac.jp
- Long Wang
- Affiliation: Shanghai Institute for Mathematics and Interdisciplinary Sciences, 657 Songhu Road, Shanghai 200433, People’s Republic of China; Shanghai Center for Mathematical Sciences, Fudan University, Jiangwan Campus, Shanghai 200438, People’s Republic of China; \normalfont{and} Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo 153-8914, Japan
- Email: wanglll@fudan.edu.cn
- Received by editor(s): April 9, 2023
- Received by editor(s) in revised form: February 16, 2024
- Published electronically: June 25, 2024
- Additional Notes: The first author was supported by JSPS KAKENHI Grant Number JP22K13903. The second author was supported by JSPS KAKENHI Grant (21J10242), Postdoctoral Fellowship Program of CPSF (GZC20230535), and National Key Research and Development Program of China (#2023YFA1010600).
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 6311-6340
- MSC (2020): Primary 37P15; Secondary 37P05, 37P30, 37P55
- DOI: https://doi.org/10.1090/tran/9211