Effective decorrelation of Hecke eigenforms
HTML articles powered by AMS MathViewer
- by Bingrong Huang;
- Trans. Amer. Math. Soc. 377 (2024), 6669-6693
- DOI: https://doi.org/10.1090/tran/9215
- Published electronically: June 21, 2024
- HTML | PDF | Request permission
Abstract:
In this paper, we prove effective quantitative decorrelation of values of two Hecke eigenforms as the weight goes to infinity. As consequences, we get an effective version of equidistribution of mass and zeros of certain linear combinations of Hecke eigenforms.References
- Charles B. Balogh, Asymptotic expansions of the modified Bessel function of the third kind of imaginary order, SIAM J. Appl. Math. 15 (1967), 1315–1323. MR 222354, DOI 10.1137/0115114
- Valentin Blomer, Rizwanur Khan, and Matthew Young, Distribution of mass of holomorphic cusp forms, Duke Math. J. 162 (2013), no. 14, 2609–2644. MR 3127809, DOI 10.1215/00127094-2380967
- P. Constantinescu, Dissipation of correlations of holomorphic cusp forms, Preprint, arXiv:2112.01427, 2021.
- Y. Colin de Verdière, Ergodicité et fonctions propres du laplacien, Comm. Math. Phys. 102 (1985), no. 3, 497–502 (French, with English summary). MR 818831, DOI 10.1007/BF01209296
- Pierre Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307 (French). MR 340258, DOI 10.1007/BF02684373
- Bingrong Huang and Zhao Xu, Sup-norm bounds for Eisenstein series, Forum Math. 29 (2017), no. 6, 1355–1369. MR 3719306, DOI 10.1515/forum-2015-0195
- Jeffrey Hoffstein and Paul Lockhart, Coefficients of Maass forms and the Siegel zero, Ann. of Math. (2) 140 (1994), no. 1, 161–181. With an appendix by Dorian Goldfeld, Hoffstein and Daniel Lieman. MR 1289494, DOI 10.2307/2118543
- Roman Holowinsky, Sieving for mass equidistribution, Ann. of Math. (2) 172 (2010), no. 2, 1499–1516. MR 2680498, DOI 10.4007/annals.2010.172.1499
- Roman Holowinsky and Kannan Soundararajan, Mass equidistribution for Hecke eigenforms, Ann. of Math. (2) 172 (2010), no. 2, 1517–1528. MR 2680499, DOI 10.4007/annals.2010.172.1517
- H. Iwaniec, Notes on the quantum unique ergodicity for holomorphic cusp forms, after Holowinsky and Soundararajan. Unpublished notes, 2010.
- Henryk Iwaniec and Emmanuel Kowalski, Analytic number theory, American Mathematical Society Colloquium Publications, vol. 53, American Mathematical Society, Providence, RI, 2004. MR 2061214, DOI 10.1090/coll/053
- N. Kimmel, Mass equidistribution for Poincaré series of large index, Preprint, arXiv:2405.01414, 2024.
- Stephen Lester, Kaisa Matomäki, and Maksym Radziwiłł, Small scale distribution of zeros and mass of modular forms, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 7, 1595–1627. MR 3807308, DOI 10.4171/JEMS/794
- Stephen Lester and Maksym Radziwiłł, Quantum unique ergodicity for half-integral weight automorphic forms, Duke Math. J. 169 (2020), no. 2, 279–351. MR 4057145, DOI 10.1215/00127094-2019-0040
- Elon Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math. (2) 163 (2006), no. 1, 165–219. MR 2195133, DOI 10.4007/annals.2006.163.165
- Wenzhi Luo and Peter Sarnak, Mass equidistribution for Hecke eigenforms, Comm. Pure Appl. Math. 56 (2003), no. 7, 874–891. Dedicated to the memory of Jürgen K. Moser. MR 1990480, DOI 10.1002/cpa.10078
- Zeév Rudnick, On the asymptotic distribution of zeros of modular forms, Int. Math. Res. Not. 34 (2005), 2059–2074. MR 2181743, DOI 10.1155/IMRN.2005.2059
- Zeév Rudnick and Peter Sarnak, The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. Math. Phys. 161 (1994), no. 1, 195–213. MR 1266075, DOI 10.1007/BF02099418
- A. I. Šnirel′man, Ergodic properties of eigenfunctions, Uspehi Mat. Nauk 29 (1974), no. 6(180), 181–182 (Russian). MR 402834
- Kannan Soundararajan, Weak subconvexity for central values of $L$-functions, Ann. of Math. (2) 172 (2010), no. 2, 1469–1498. MR 2680497, DOI 10.4007/annals.2010.172.1469
- Kannan Soundararajan, Quantum unique ergodicity for $\textrm {SL}_2(\Bbb Z)\backslash \Bbb H$, Ann. of Math. (2) 172 (2010), no. 2, 1529–1538. MR 2680500, DOI 10.4007/annals.2010.172.1529
- Kannan Soundararajan and Jesse Thorner, Weak subconvexity without a Ramanujan hypothesis, Duke Math. J. 168 (2019), no. 7, 1231–1268. With an appendix by Farrell Brumley. MR 3953433, DOI 10.1215/00127094-2018-0065
- T. Watson, Rankin Triple Products and Quantum Chaos. Preprint, arXiv:0810.0425, 2008.
- Steven Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55 (1987), no. 4, 919–941. MR 916129, DOI 10.1215/S0012-7094-87-05546-3
- Steven Zelditch, Selberg trace formulae and equidistribution theorems for closed geodesics and Laplace eigenfunctions: finite area surfaces, Mem. Amer. Math. Soc. 96 (1992), no. 465, vi+102. MR 1101972, DOI 10.1090/memo/0465
- Steve Zelditch, Note on quantum unique ergodicity, Proc. Amer. Math. Soc. 132 (2004), no. 6, 1869–1872. MR 2051153, DOI 10.1090/S0002-9939-03-07298-8
Bibliographic Information
- Bingrong Huang
- Affiliation: Data Science Institute and School of Mathematics, Shandong University, Jinan, Shandong 250100, People’s Republic of China
- MR Author ID: 1088033
- ORCID: 0000-0002-8987-0015
- Email: brhuang@sdu.edu.cn
- Received by editor(s): August 31, 2022
- Received by editor(s) in revised form: February 9, 2024, and March 26, 2024
- Published electronically: June 21, 2024
- Additional Notes: This work was supported by the National Key R&D Program of China (No. 2021YFA1000700) and NSFC (No. 12031008).
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 6669-6693
- MSC (2020): Primary 11F11, 11F67, 58J51, 81Q50
- DOI: https://doi.org/10.1090/tran/9215