Combinatorial patchworking: Back from tropical geometry
HTML articles powered by AMS MathViewer
- by Erwan Brugallé, Lucía López de Medrano and Johannes Rau;
- Trans. Amer. Math. Soc. 377 (2024), 6793-6826
- DOI: https://doi.org/10.1090/tran/9054
- Published electronically: July 29, 2024
- HTML | PDF
Abstract:
We show that, once translated to the dual setting of convex triangulations of lattice polytopes, results and methods from Arnal, Renaudineau, and Shaw [Ann. H. Lebesgue 4 (2021), pp. 1347–1387], Renaudineau and Shaw [Ann. Sci. Éc. Norm. Supér. (4) 56 (2023), pp. 945–980], Jell, Rau, and Shaw [Épijournal Géom. Algébrique 2 (2018), p. 27] and Reanaudineau, Rau, and Shaw [Real phase structures on tropical manifolds and patchworks in higher codimension, in preparation] extend to non-convex triangulations. So, while the translation of Viro’s patchworking method to the setting of tropical hypersurfaces has inspired several tremendous developments over the last two decades, we return to the original polytope setting in order to generalize and simplify some results regarding the topology of $T$-submanifolds of real toric varieties.References
- E. Ambrosi and M. Manzaroli, Betti numbers of real semistable degenerations via real logarithmic geometry, arXiv:2211.12134 (2022)
- Charles Arnal, Arthur Renaudineau, and Kris Shaw, Lefschetz section theorems for tropical hypersurfaces, Ann. H. Lebesgue 4 (2021), 1347–1387 (English, with English and French summaries). MR 4353965, DOI 10.5802/ahl.104
- A. Björner and F. Brenti, Combinatorics of Coxeter groups, volume 231. Springer Berlin Heidelberg, 2005.
- Benoît Bertrand and Erwan Brugallé, A Viro theorem without convexity hypothesis for trigonal curves, Int. Math. Res. Not. , posted on (2006), Art. ID 87604, 33. MR 2264728, DOI 10.1155/IMRN/2006/87604
- B. Bertrand and F. Bihan, Euler characteristic of real nondegenerate tropical complete intersections, arXiv:0710.1222, 2007.
- Benoît Bertrand and Erwan Brugallé, A nonalgebraic patchwork, Math. Z. 259 (2008), no. 3, 481–486. MR 2395123, DOI 10.1007/s00209-007-0232-2
- Benoit Bertrand, Euler characteristic of primitive $T$-hypersurfaces and maximal surfaces, J. Inst. Math. Jussieu 9 (2010), no. 1, 1–27. MR 2576796, DOI 10.1017/S1474748009000152
- Frédéric Bihan, Matthias Franz, Clint McCrory, and Joost van Hamel, Is every toric variety an M-variety?, Manuscripta Math. 120 (2006), no. 2, 217–232. MR 2234250, DOI 10.1007/s00229-006-0004-z
- A. Björner, Posets, regular CW complexes and Bruhat order, European J. Combin. 5 (1984), no. 1, 7–16. MR 746039, DOI 10.1016/S0195-6698(84)80012-8
- Erwan Brugallé, Euler characteristic and signature of real semi-stable degenerations, J. Inst. Math. Jussieu 22 (2023), no. 5, 2447–2454. MR 4624967, DOI 10.1017/S1474748022000056
- Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR 658304, DOI 10.1007/978-1-4757-3951-0
- Alex Chandler, On Thin Posets and Categorification, ProQuest LLC, Ann Arbor, MI, 2019. Thesis (Ph.D.)–North Carolina State University. MR 4094257
- V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), no. 2(200), 85–134, 247 (Russian). MR 495499
- V. I. Danilov and A. G. Khovanskiĭ, Newton polyhedra and an algorithm for calculating Hodge-Deligne numbers, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 5, 925–945 (Russian). MR 873655
- Jesús A. De Loera, Jörg Rambau, and Francisco Santos, Triangulations, Algorithms and Computation in Mathematics, vol. 25, Springer-Verlag, Berlin, 2010. Structures for algorithms and applications. MR 2743368, DOI 10.1007/978-3-642-12971-1
- Jesús A. De Loera and Frederick J. Wicklin, On the need of convexity in patchworking, Adv. in Appl. Math. 20 (1998), no. 2, 188–219. MR 1601379, DOI 10.1006/aama.1997.0571
- Sandra Di Rocco, Christian Haase, and Benjamin Nill, A note on discrete mixed volume and Hodge-Deligne numbers, Adv. in Appl. Math. 104 (2019), 1–13. MR 3880729, DOI 10.1016/j.aam.2018.11.002
- W. Fulton, R. MacPherson, F. Sottile, and B. Sturmfels, Intersection theory on spherical varieties, J. Algebraic Geom. 4 (1995), no. 1, 181–193. MR 1299008
- William Fulton and Bernd Sturmfels, Intersection theory on toric varieties, Topology 36 (1997), no. 2, 335–353. MR 1415592, DOI 10.1016/0040-9383(96)00016-X
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete mathematics, 2nd ed., Addison-Wesley Publishing Company, Reading, MA, 1994. A foundation for computer science. MR 1397498
- I. M. Gel′fand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1264417, DOI 10.1007/978-0-8176-4771-1
- B. Haas, Real algebraic curves and combinatorial constructions, Thèse doctorale, Université de Strasbourg, 1997.
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- Ilia Itenberg, Ludmil Katzarkov, Grigory Mikhalkin, and Ilia Zharkov, Tropical homology, Math. Ann. 374 (2019), no. 1-2, 963–1006. MR 3961331, DOI 10.1007/s00208-018-1685-9
- Ilia Itenberg and Eugenii Shustin, Combinatorial patchworking of real pseudo-holomorphic curves, Turkish J. Math. 26 (2002), no. 1, 27–51. MR 1892798
- Ilia Itenberg and Eugenii Shustin, Viro theorem and topology of real and complex combinatorial hypersurfaces, Israel J. Math. 133 (2003), 189–238. MR 1968429, DOI 10.1007/BF02773068
- Ilia Itenberg, Counter-examples to Ragsdale conjecture and $T$-curves, Real algebraic geometry and topology (East Lansing, MI, 1993) Contemp. Math., vol. 182, Amer. Math. Soc., Providence, RI, 1995, pp. 55–72. MR 1318731, DOI 10.1090/conm/182/02087
- Ilia Itenberg, Topology of real algebraic $T$-surfaces, Rev. Mat. Univ. Complut. Madrid 10 (1997), no. Special Issue, suppl., 131–152. Real algebraic and analytic geometry (Segovia, 1995). MR 1485296
- Ilia Itenberg and Oleg Viro, Patchworking algebraic curves disproves the Ragsdale conjecture, Math. Intelligencer 18 (1996), no. 4, 19–28. MR 1413249, DOI 10.1007/BF03026748
- Ilia Itenberg and Oleg Viro, Asymptotically maximal real algebraic hypersurfaces of projective space, Proceedings of Gökova Geometry-Topology Conference 2006, Gökova Geometry/Topology Conference (GGT), Gökova, 2007, pp. 91–105. MR 2404951
- A. Jordan, Homology and cohomology of toric varieties, PhD thesis, Universität Konstanz, 1998.
- Philipp Jell, Johannes Rau, and Kristin Shaw, Lefschetz $(1,1)$-theorem in tropical geometry, Épijournal Géom. Algébrique 2 (2018), Art. 11, 27 (English, with English and French summaries). MR 3894860, DOI 10.46298/epiga.2018.volume2.4126
- Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin, 1992. MR 1217488, DOI 10.1007/978-3-662-02772-1
- Johannes Rau, Arthur Renaudineau, and Kris Shaw, Real phase structures on tropical manifolds and patchworks in higher codimension, arXiv:2310.08313 (2023)
- A. Renaudineau, J. Rau, and K. Shaw, Real phase structures and patchworking of tropical manifolds, in preparation.
- Johannes Rau, Arthur Renaudineau, and Kris Shaw, Real phase structures on matroid fans and matroid orientations, J. Lond. Math. Soc. (2) 106 (2022), no. 4, 3687–3710. MR 4524208, DOI 10.1112/jlms.12671
- Colin Patrick Rourke and Brian Joseph Sanderson, Introduction to piecewise-linear topology, Springer Study Edition, Springer-Verlag, Berlin-New York, 1982. Reprint. MR 665919
- Arthur Renaudineau and Kris Shaw, Bounding the Betti numbers of real hypersurfaces near the tropical limit, Ann. Sci. Éc. Norm. Supér. (4) 56 (2023), no. 3, 945–980 (English, with English and French summaries). MR 4650158, DOI 10.24033/asens.2547
- Bernd Sturmfels, Viro’s theorem for complete intersections, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21 (1994), no. 3, 377–386. MR 1310632
- O. Ya. Viro, Gluing of plane real algebraic curves and constructions of curves of degrees $6$ and $7$, Topology (Leningrad, 1982) Lecture Notes in Math., vol. 1060, Springer, Berlin, 1984, pp. 187–200. MR 770238, DOI 10.1007/BFb0099934
- O. Ya. Viro, Patchworking real algebraic varieties, arXiv:math.0611382, 2006.
- Claire Voisin, Théorie de Hodge et géométrie algébrique complexe, Cours Spécialisés [Specialized Courses], vol. 10, Société Mathématique de France, Paris, 2002 (French). MR 1988456, DOI 10.1017/CBO9780511615344
- Ilia Zharkov, The Orlik-Solomon algebra and the Bergman fan of a matroid, J. Gökova Geom. Topol. GGT 7 (2013), 25–31. MR 3153919
Bibliographic Information
- Erwan Brugallé
- Affiliation: Nantes Université, Laboratoire de Mathématiques Jean Leray, 2 rue de la Houssinière, F-44322 Nantes Cedex 3, France
- MR Author ID: 785253
- ORCID: 0000-0002-2392-245X
- Email: erwan.brugalle@math.cnrs.fr
- Lucía López de Medrano
- Affiliation: Unidad Cuernavaca del Instituto de Matemáticas, UNAM, Mexico
- Email: lucia.ldm@im.unam.mx
- Johannes Rau
- Affiliation: Universidad de los Andes, Carrera 1 no. 18A-12, Bogotá, Colombia
- MR Author ID: 872714
- ORCID: 0000-0002-2392-245X
- Email: j.rau@uniandes.edu.co
- Received by editor(s): May 20, 2023
- Published electronically: July 29, 2024
- Additional Notes: The third author was funded by the program Missions Chercheurs Invités of Nantes Université, and the second author was funded by ECOS NORD 298995, CONACyT 282937, CONACyT I1200/381/2019 and PAPIIT-IN108520. The first author was partially supported by the grant TROPICOUNT of Région Pays de la Loire, and the ANR project ENUMGEOM NR-18-CE40-0009-02. The third author was supported by FAPA grant by the Facultad de Ciencias, Universidad de los Andes, Bogotá.
- © Copyright 2024 by the authors
- Journal: Trans. Amer. Math. Soc. 377 (2024), 6793-6826
- MSC (2020): Primary 14P25, 52B70; Secondary 14F25
- DOI: https://doi.org/10.1090/tran/9054