Commensurated hyperbolic subgroups
HTML articles powered by AMS MathViewer
- by Nir Lazarovich, Alex Margolis and Mahan Mj;
- Trans. Amer. Math. Soc. 377 (2024), 7377-7402
- DOI: https://doi.org/10.1090/tran/9209
- Published electronically: July 19, 2024
- HTML | PDF | Request permission
Abstract:
We show that if $H$ is a non-elementary hyperbolic commensurated subgroup of infinite index in a hyperbolic group $G$, then $H$ is virtually a free product of hyperbolic surface groups and free groups. We prove that whenever a one-ended hyperbolic group $H$ is a fiber of a non-trivial hyperbolic bundle then $H$ virtually splits over a 2-ended subgroup.References
- Herbert Abels, Specker-Kompaktifizierungen von lokal kompakten topologischen Gruppen, Math. Z. 135 (1973/74), 325–361 (German). MR 344375, DOI 10.1007/BF01215373
- Mladen Bestvina, Degenerations of the hyperbolic space, Duke Math. J. 56 (1988), no. 1, 143–161. MR 932860, DOI 10.1215/S0012-7094-88-05607-4
- Mladen Bestvina and Mark Feighn, Stable actions of groups on real trees, Invent. Math. 121 (1995), no. 2, 287–321. MR 1346208, DOI 10.1007/BF01884300
- Nic Brody, David Fisher, Mahan Mj, and Wouter van Limbeek, Greenberg-shalom’s commensurator arithmeticity hypothesis and applications, preprint, 2023.
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- Mladen Bestvina and Geoffrey Mess, The boundary of negatively curved groups, J. Amer. Math. Soc. 4 (1991), no. 3, 469–481. MR 1096169, DOI 10.1090/S0894-0347-1991-1096169-1
- Brian H. Bowditch, Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998), no. 2, 145–186. MR 1638764, DOI 10.1007/BF02392898
- B. H. Bowditch, Stacks of hyperbolic spaces and ends of 3-manifolds, Geometry and topology down under, Contemp. Math., vol. 597, Amer. Math. Soc., Providence, RI, 2013, pp. 65–138. MR 3186670, DOI 10.1090/conm/597/11769
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York, 1994. Corrected reprint of the 1982 original. MR 1324339
- Pierre-Emmanuel Caprace, Yves Cornulier, Nicolas Monod, and Romain Tessera, Amenable hyperbolic groups, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 11, 2903–2947. MR 3420526, DOI 10.4171/JEMS/575
- Yves Cornulier and Pierre de la Harpe, Metric geometry of locally compact groups, EMS Tracts in Mathematics, vol. 25, European Mathematical Society (EMS), Zürich, 2016. Winner of the 2016 EMS Monograph Award. MR 3561300, DOI 10.4171/166
- Matias Carrasco and John M. Mackay, Conformal dimension of hyperbolic groups that split over elementary subgroups, Invent. Math. 227 (2022), no. 2, 795–854. MR 4372224, DOI 10.1007/s00222-021-01074-w
- Yves de Cornulier, On the quasi-isometric classification of locally compact groups, New directions in locally compact groups, London Math. Soc. Lecture Note Ser., vol. 447, Cambridge Univ. Press, Cambridge, 2018, pp. 275–342. MR 3793294
- M. J. Dunwoody, The accessibility of finitely presented groups, Invent. Math. 81 (1985), no. 3, 449–457. MR 807066, DOI 10.1007/BF01388581
- Étienne Ghys and Pierre de la Harpe, Espaces métriques hyperboliques, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) Progr. Math., vol. 83, Birkhäuser Boston, Boston, MA, 1990, pp. 27–45 (French). MR 1086650, DOI 10.1007/978-1-4684-9167-8_{2}
- Pritam Ghosh and Mahan Mj, Regluing graphs of free groups, Algebr. Geom. Topol. 22 (2022), no. 4, 1969–2006. MR 4495672, DOI 10.2140/agt.2022.22.1969
- Rita Gitik, Mahan Mitra, Eliyahu Rips, and Michah Sageev, Widths of subgroups, Trans. Amer. Math. Soc. 350 (1998), no. 1, 321–329. MR 1389776, DOI 10.1090/S0002-9947-98-01792-9
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- Michael Kapovich and Bruce Kleiner, Hyperbolic groups with low-dimensional boundary, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 5, 647–669 (English, with English and French summaries). MR 1834498, DOI 10.1016/S0012-9593(00)01049-1
- Bruce Kleiner, The asymptotic geometry of negatively curved spaces: uniformization, geometrization and rigidity, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 743–768. MR 2275621
- Nir Lazarovich, Finite index rigidity of hyperbolic groups, arXiv preprint arXiv:2302.04484, 2023.
- Larsen Louder and Nicholas Touikan, Strong accessibility for finitely presented groups, Geom. Topol. 21 (2017), no. 3, 1805–1835. MR 3650082, DOI 10.2140/gt.2017.21.1805
- Alexander Margolis, The geometry of groups containing almost normal subgroups, Geom. Topol. 25 (2021), no. 5, 2405–2468. MR 4310893, DOI 10.2140/gt.2021.25.2405
- Alex Margolis, Discretisable quasi-actions I: Topological completions and hyperbolicity, arXiv preprint arXiv:2207.04401, 2022.
- Honglin Min, Hyperbolic graphs of surface groups, Algebr. Geom. Topol. 11 (2011), no. 1, 449–476. MR 2783234, DOI 10.2140/agt.2011.11.449
- M. Mitra, Ending laminations for hyperbolic group extensions, Geom. Funct. Anal. 7 (1997), no. 2, 379–402. MR 1445392, DOI 10.1007/PL00001624
- Mahan Mitra, Cannon-Thurston maps for hyperbolic group extensions, Topology 37 (1998), no. 3, 527–538. MR 1604882, DOI 10.1016/S0040-9383(97)00036-0
- Mahan Mitra, Cannon-Thurston maps for trees of hyperbolic metric spaces, J. Differential Geom. 48 (1998), no. 1, 135–164. MR 1622603
- Lee Mosher, Hyperbolic extensions of groups, J. Pure Appl. Algebra 110 (1996), no. 3, 305–314. MR 1393118, DOI 10.1016/0022-4049(95)00081-X
- Mahan Mj and Pranab Sardar, A combination theorem for metric bundles, Geom. Funct. Anal. 22 (2012), no. 6, 1636–1707. MR 3000500, DOI 10.1007/s00039-012-0196-1
- Alexandre Martin and Jacek Świątkowski, Infinitely-ended hyperbolic groups with homeomorphic Gromov boundaries, J. Group Theory 18 (2015), no. 2, 273–289. MR 3318538, DOI 10.1515/jgth-2014-0043
- Deane Montgomery and Leo Zippin, Topological transformation groups, Interscience Publishers, New York-London, 1955. MR 73104
- John Pardon, The Hilbert-Smith conjecture for three-manifolds, J. Amer. Math. Soc. 26 (2013), no. 3, 879–899. MR 3037790, DOI 10.1090/S0894-0347-2013-00766-3
- Frédéric Paulin, Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math. 94 (1988), no. 1, 53–80 (French). MR 958589, DOI 10.1007/BF01394344
- E. Rips and Z. Sela, Structure and rigidity in hyperbolic groups. I, Geom. Funct. Anal. 4 (1994), no. 3, 337–371. MR 1274119, DOI 10.1007/BF01896245
- E. Rips and Z. Sela, Cyclic splittings of finitely presented groups and the canonical JSJ decomposition, Ann. of Math. (2) 146 (1997), no. 1, 53–109. MR 1469317, DOI 10.2307/2951832
- Z. Sela, Structure and rigidity in (Gromov) hyperbolic groups and discrete groups in rank $1$ Lie groups. II, Geom. Funct. Anal. 7 (1997), no. 3, 561–593. MR 1466338, DOI 10.1007/s000390050019
- John R. Stallings, On torsion-free groups with infinitely many ends, Ann. of Math. (2) 88 (1968), 312–334. MR 228573, DOI 10.2307/1970577
- Yehuda Shalom and George A. Willis, Commensurated subgroups of arithmetic groups, totally disconnected groups and adelic rigidity, Geom. Funct. Anal. 23 (2013), no. 5, 1631–1683. MR 3102914, DOI 10.1007/s00039-013-0236-5
- G. A. Swarup, On the cut point conjecture, Electron. Res. Announc. Amer. Math. Soc. 2 (1996), no. 2, 98–100. MR 1412948, DOI 10.1090/S1079-6762-96-00013-3
- Eric L. Swenson, Quasi-convex groups of isometries of negatively curved spaces, Topology Appl. 110 (2001), no. 1, 119–129. Geometric topology and geometric group theory (Milwaukee, WI, 1997). MR 1804703, DOI 10.1016/S0166-8641(99)00166-2
Bibliographic Information
- Nir Lazarovich
- Affiliation: Department of Mathematics, Technion, Haifa 32000, Israel
- MR Author ID: 1050240
- Email: lazarovich@technion.ac.il
- Alex Margolis
- Affiliation: Department of Mathematics, The Ohio State University, Mathematics Tower, 231 W 18th Ave, Columbus, Ohio 43210
- MR Author ID: 1275779
- ORCID: 0000-0002-0267-6093
- Email: margolis.93@osu.edu
- Mahan Mj
- Affiliation: School of Mathematics, Tata Institute of Fundamental Research, Mumbai-40005, India
- MR Author ID: 606917
- Email: mahan@math.tifr.res.in, mahan.mj@gmail.com
- Received by editor(s): January 7, 2024
- Received by editor(s) in revised form: March 26, 2024, April 7, 2024, April 10, 2024, and April 11, 2024
- Published electronically: July 19, 2024
- Additional Notes: The second and third authors were supported in part by the Institut Henri Poincare (UAR 839 CNRS-Sorbonne Universite), LabEx CARMIN, ANR-10-LABX-59-01, during their participation in the trimester program “Groups acting on fractals, Hyperbolicity and Self-similarity”, April-June 2022. The first author was partially supported by the Israeli Science Foundation (grant no. 1576/23). The third author was supported by the Department of Atomic Energy, Government of India, under project no.12-R&D-TFR-5.01-0500, by an endowment of the Infosys Foundation and by a DST JC Bose Fellowship.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 7377-7402
- MSC (2020): Primary 20F65, 20F67
- DOI: https://doi.org/10.1090/tran/9209