On Weil-Stark elements, II: Refined Stark conjectures
HTML articles powered by AMS MathViewer
- by David Burns, Daniel Macias Castillo and Soogil Seo;
- Trans. Amer. Math. Soc. 377 (2024), 7337-7375
- DOI: https://doi.org/10.1090/tran/9214
- Published electronically: June 18, 2024
- HTML | PDF | Request permission
Abstract:
The theory of Weil-Stark elements is used to develop an axiomatic approach to the formulation of refined versions of Stark’s Conjecture. This gives concrete new results concerning leading terms of Artin $L$-series and arithmetic properties of Stark elements.References
- W. Bley, Computation of Stark-Tamagawa units, Math. Comp. 72 (2003), no. 244, 1963–1974. MR 1986815, DOI 10.1090/S0025-5718-03-01561-8
- Werner Bley and Alessandro Cobbe, Equivariant epsilon constant conjectures for weakly ramified extensions, Math. Z. 283 (2016), no. 3-4, 1217–1244. MR 3520002, DOI 10.1007/s00209-016-1640-y
- Werner Bley and Ruben Debeerst, Algorithmic proof of the epsilon constant conjecture, Math. Comp. 82 (2013), no. 284, 2363–2387. MR 3073206, DOI 10.1090/S0025-5718-2013-02691-9
- Manuel Breuning, Equivariant local epsilon constants and étale cohomology, J. London Math. Soc. (2) 70 (2004), no. 2, 289–306. MR 2078894, DOI 10.1112/S002461070400554X
- D. Bullach, D. Burns, A. Daoud, and S. Seo, Dirichlet $L$-series at $s = 0$ and the scarcity of Euler systems, Submitted for publication, arXiv:2111.14689.
- David Burns, On derivatives of Artin $L$-series, Invent. Math. 186 (2011), no. 2, 291–371. MR 2845620, DOI 10.1007/s00222-011-0320-0
- David Burns, On derivatives of $p$-adic $L$-series at $s = 0$, J. Reine Angew. Math. 762 (2020), 53–104. MR 4195656, DOI 10.1515/crelle-2018-0020
- D. Burns and M. Kakde, On Weil-étale cohomology and Artin $L$-series, Submitted for publication.
- David Burns, Masato Kurihara, and Takamichi Sano, On zeta elements for $\Bbb G_m$, Doc. Math. 21 (2016), 555–626. MR 3522250, DOI 10.4171/dm/540
- David Burns and Alice Livingstone Boomla, On Selmer groups and refined Stark conjectures, Bull. Lond. Math. Soc. 50 (2018), no. 5, 845–862. MR 3873498, DOI 10.1112/blms.12190
- D. Burns, D. Macias Castillo, and S. Seo, On Weil-Stark elements I: general properties, Submitted for publication.
- D. Burns and T. Sano, On non-commutative Euler systems, I: preliminaries on ‘det’ and ‘Fit’, Submitted for publication. arXiv:2004.10564.
- D. Burns and T. Sano, On non-commutative Iwasawa theory and derivatives of Euler systems, Preprint, arXiv:2211.00276.
- T. Chinburg, Stark’s conjecture for $L$-functions with first-order zeroes at $s=0$, Adv. in Math. 48 (1983), no. 1, 82–113. MR 697616, DOI 10.1016/0001-8708(83)90006-3
- T. Chinburg, On the Galois structure of algebraic integers and $S$-units, Invent. Math. 74 (1983), no. 3, 321–349. MR 724009, DOI 10.1007/BF01394240
- Gerald Cliff, Jürgen Ritter, and Alfred Weiss, Group representations and integrality, J. Reine Angew. Math. 426 (1992), 193–202. MR 1155753
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. II, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1987. With applications to finite groups and orders; A Wiley-Interscience Publication. MR 892316
- Samit Dasgupta and Mahesh Kakde, On the Brumer-Stark conjecture, Ann. of Math. (2) 197 (2023), no. 1, 289–388. MR 4513146, DOI 10.4007/annals.2023.197.1.5
- D. S. Dummit, Computations related to Stark’s conjecture, Stark’s conjectures: recent work and new directions, Contemp. Math., vol. 358, Amer. Math. Soc., Providence, RI, 2004, pp. 37–54. MR 2088711, DOI 10.1090/conm/358/06535
- Caleb J. Emmons and Cristian D. Popescu, Special values of abelian $L$-functions at $s=0$, J. Number Theory 129 (2009), no. 6, 1350–1365. MR 2521478, DOI 10.1016/j.jnt.2008.06.016
- Bruce Ferrero and Lawrence C. Washington, The Iwasawa invariant $\mu _{p}$ vanishes for abelian number fields, Ann. of Math. (2) 109 (1979), no. 2, 377–395. MR 528968, DOI 10.2307/1971116
- Matthias Flach, On the cyclotomic main conjecture for the prime 2, J. Reine Angew. Math. 661 (2011), 1–36. MR 2863902, DOI 10.1515/CRELLE.2011.082
- Wolfgang Gaschütz, Endliche Gruppen mit treuen absolut-irreduziblen Darstellungen, Math. Nachr. 12 (1954), 253–255 (German). MR 67115, DOI 10.1002/mana.19540120308
- Ralph Greenberg, On $p$-adic Artin $L$-functions, Nagoya Math. J. 89 (1983), 77–87. MR 692344, DOI 10.1017/S0027763000020250
- Benedict H. Gross, $p$-adic $L$-series at $s=0$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 979–994 (1982). MR 656068
- David R. Hayes, Stickelberger functions for non-abelian Galois extensions of global fields, Stark’s conjectures: recent work and new directions, Contemp. Math., vol. 358, Amer. Math. Soc., Providence, RI, 2004, pp. 193–206. MR 2063780, DOI 10.1090/conm/358/06542
- Uwe Jannsen, Iwasawa modules up to isomorphism, Algebraic number theory, Adv. Stud. Pure Math., vol. 17, Academic Press, Boston, MA, 1989, pp. 171–207. MR 1097615, DOI 10.2969/aspm/01710171
- Henri Johnston and Andreas Nickel, Noncommutative Fitting invariants and improved annihilation results, J. Lond. Math. Soc. (2) 88 (2013), no. 1, 137–160. MR 3092262, DOI 10.1112/jlms/jdt009
- Henri Johnston and Andreas Nickel, Hybrid Iwasawa algebras and the equivariant Iwasawa main conjecture, Amer. J. Math. 140 (2018), no. 1, 245–276. MR 3749195, DOI 10.1353/ajm.2018.0005
- Henri Johnston and Andreas Nickel, On the $p$-adic Stark conjecture at $s = 1$ and applications, J. Lond. Math. Soc. (2) 101 (2020), no. 3, 1320–1354. With an appendix by Tommy Hofmann, Johnston and Nickel. MR 4111943, DOI 10.1112/jlms.12310
- L. V. Kuz′min, The Tate module of algebraic number fields, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 267–327 (Russian). MR 304353
- Kevin J. McGown, Jonathan W. Sands, and Daniel Vallières, Numerical evidence for higher order Stark-type conjectures, Math. Comp. 88 (2019), no. 315, 389–420. MR 3854063, DOI 10.1090/mcom/3337
- Andreas Nickel, On non-abelian Stark-type conjectures, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 6, 2577–2608 (2012) (English, with English and French summaries). MR 2976321, DOI 10.5802/aif.2683
- Andreas Nickel, Integrality of Stickelberger elements and the equivariant Tamagawa number conjecture, J. Reine Angew. Math. 719 (2016), 101–132. MR 3552493, DOI 10.1515/crelle-2014-0042
- Andreas Nickel, The strong Stark conjecture for totally odd characters, Proc. Amer. Math. Soc. 152 (2024), no. 1, 147–162. MR 4661071, DOI 10.1090/proc/16619
- Cristian D. Popescu, Base change for Stark-type conjectures “over $\Bbb Z$”, J. Reine Angew. Math. 542 (2002), 85–111. MR 1880826, DOI 10.1515/crll.2002.010
- Jürgen Ritter and Alfred Weiss, A Tate sequence for global units, Compositio Math. 102 (1996), no. 2, 147–178. MR 1394524
- Jürgen Ritter and Alfred Weiss, Cohomology of units and $L$-values at zero, J. Amer. Math. Soc. 10 (1997), no. 3, 513–552. MR 1423032, DOI 10.1090/S0894-0347-97-00234-8
- Karl Rubin, A Stark conjecture “over $\mathbf Z$” for abelian $L$-functions with multiple zeros, Ann. Inst. Fourier (Grenoble) 46 (1996), no. 1, 33–62 (English, with English and French summaries). MR 1385509, DOI 10.5802/aif.1505
- Jean-Pierre Serre, Sur le résidu de la fonction zêta $p$-adique d’un corps de nombres, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 4, A183–A188 (French, with English summary). MR 506177
- Carl Ludwig Siegel, Über die Fourierschen Koeffizienten von Modulformen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1970 (1970), 15–56 (German). MR 285488
- H. M. Stark, Class fields and modular forms of weight one, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) Lecture Notes in Math., Vol. 601, Springer, Berlin-New York, 1977, pp. 277–287. MR 450243
- Harold M. Stark, $L$-functions at $s=1$. IV. First derivatives at $s=0$, Adv. in Math. 35 (1980), no. 3, 197–235. MR 563924, DOI 10.1016/0001-8708(80)90049-3
- H. M. Stark, Derivatives of $L$-series at $s=0$, Automorphic forms, representation theory and arithmetic (Bombay, 1979) Tata Inst. Fund. Res. Studies in Math., vol. 10, Tata Inst. Fund. Res., Bombay, 1981, pp. 261–273. MR 633665
- Richard G. Swan, Induced representations and projective modules, Ann. of Math. (2) 71 (1960), 552–578. MR 138688, DOI 10.2307/1969944
- John Tate, Les conjectures de Stark sur les fonctions $L$ d’Artin en $s=0$, Progress in Mathematics, vol. 47, Birkhäuser Boston, Inc., Boston, MA, 1984 (French). Lecture notes edited by Dominique Bernardi and Norbert Schappacher. MR 782485
- Daniel Vallières, The equivariant Tamagawa number conjecture and the extended abelian Stark conjecture, J. Reine Angew. Math. 734 (2018), 1–58. MR 3739312, DOI 10.1515/crelle-2015-0014
Bibliographic Information
- David Burns
- Affiliation: Department of Mathematics, King’s College London, London WC2R 2LS, United Kingdom
- MR Author ID: 43610
- ORCID: 0000-0003-2928-0934
- Email: david.burns@kcl.ac.uk
- Daniel Macias Castillo
- Affiliation: Instituto de Ciencias Matemáticas, c/ Nicolás Cabrera 13-15, Campus de Cantoblanco UAM, 28049 Madrid, Spain
- MR Author ID: 968365
- ORCID: 0000-0002-1130-3491
- Email: daniel.macias@icmat.es
- Soogil Seo
- Affiliation: Department of Mathematics, Yonsei University, Seoul, Korea
- MR Author ID: 678646
- Email: sgseo@yonsei.ac.kr
- Received by editor(s): November 9, 2023
- Received by editor(s) in revised form: April 5, 2024
- Published electronically: June 18, 2024
- Additional Notes: The first and third authors gratefully acknowledge the generous support of Yonsei University, where parts of this research were completed.
The second author acknowledges support as part of Grants CEX2019-000904-S, PID2019-108936GB-C21 and PID2022-142024NB-I00 funded by MCIN/AEI/ 10.13039/501100011033. He also thanks the Isaac Newton Institute, and the organisers of the programme ‘$K$-theory, algebraic cycles and motivic homotopy theory’, for support that helped advance this project.
The third author was supported by a National Research Foundation of Korea grant (NRF-2022R1F1A1059558) funded by the government of Korea (MSIT) - © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 7337-7375
- MSC (2020): Primary 11R42, 11R59; Secondary 11R27, 11R34
- DOI: https://doi.org/10.1090/tran/9214