Topological moduli space for germs of holomorphic foliations III: Complete families
HTML articles powered by AMS MathViewer
- by David Marín, Jean-François Mattei and Eliane Salem;
- Trans. Amer. Math. Soc. 377 (2024), 7309-7335
- DOI: https://doi.org/10.1090/tran/9250
- Published electronically: August 16, 2024
- HTML | PDF | Request permission
Abstract:
In this work we use our previous results on the topological classification of generic singular foliation germs on $(\mathbb {C}^{2},0)$ to construct complete families: after fixing the semi-local topological invariants we prove the existence of a minimal family of foliation germs that contains all the topological classes and such that any equisingular global family with parameter space an arbitrary complex manifold factorizes through it.References
- César Camacho, Alcides Lins Neto, and Paulo Sad, Topological invariants and equidesingularization for holomorphic vector fields, J. Differential Geom. 20 (1984), no. 1, 143–174. MR 772129
- F. Cano, D. Cerveau, and J. Deserti, Théorie élémentaire des feuilletages holomorphes singuliers, Éditions Belin, 2013.
- Laurent Le Floch, Rigidité générique des feuilletages singuliers, Ann. Sci. École Norm. Sup. (4) 31 (1998), no. 6, 765–785 (French, with English and French summaries). MR 1664226, DOI 10.1016/S0012-9593(99)80002-0
- K. Kodaira and D. C. Spencer, A theorem of completeness for complex analytic fibre spaces, Acta Math. 100 (1958), 281–294. MR 112155, DOI 10.1007/BF02559541
- Frank Loray, Pseudo-groupe d’une singularité de feuilletage holomorphe en dimension deux, The maximal subgroups of the symmetric group. Pseudo-groupe d’une singularité de feuilletage holomorphe en dimension deux, Ensaios Mat., vol. 36, Soc. Brasil. Mat., Rio de Janeiro, [2021] ©2021, pp. 53–274 (French, with English and French summaries). MR 4573978
- David Marín and Jean-François Mattei, Mapping class group of a plane curve germ, Topology Appl. 158 (2011), no. 11, 1271–1295. MR 2806361, DOI 10.1016/j.topol.2011.04.009
- David Marín and Jean-François Mattei, Monodromy and topological classification of germs of holomorphic foliations, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 3, 405–445 (English, with English and French summaries). MR 3014482, DOI 10.24033/asens.2169
- David Marín and Jean-François Mattei, Topology of singular holomorphic foliations along a compact divisor, J. Singul. 9 (2014), 122–150. MR 3249054, DOI 10.5427/jsing.2014.9k
- David Marín, Jean-François Mattei, and Éliane Salem, Topological moduli space for germs of holomorphic foliations, Int. Math. Res. Not. IMRN 23 (2020), 9228–9292. MR 4182795, DOI 10.1093/imrn/rny244
- D. Marín, J-F. Mattei, and E. Salem, Topological moduli space for germs of holomorphic foliations II: universal deformations, arXiv:2105.12688v2 [math.DS]. To appear in The Annali della Scuola Normale di Pisa - Classe di Scienze.
- J.-F. Mattei and E. Salem, Modules formels locaux de feuilletages holomorphes, arXiv:math/0402256v1 [math.DS], 2004.
- I. Nakai, Separatrices for non-solvable dynamics on $(\mathbb C,0)$, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 2, 569–599.
- Ricardo Pérez Marco, Nonlinearizable holomorphic dynamics having an uncountable number of symmetries, Invent. Math. 119 (1995), no. 1, 67–127 (English, with English and French summaries). MR 1309972, DOI 10.1007/BF01245175
- Julio C. Rebelo, On transverse rigidity for singular foliations in $(\Bbb C^2,0)$, Ergodic Theory Dynam. Systems 31 (2011), no. 3, 935–950. MR 2794955, DOI 10.1017/S0143385710000180
- Loïc Teyssier, Germes de feuilletages présentables du plan complexe, Bull. Braz. Math. Soc. (N.S.) 46 (2015), no. 2, 275–329 (French, with English and French summaries). MR 3448945, DOI 10.1007/s00574-015-0093-y
Bibliographic Information
- David Marín
- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès (Barcelona), Spain; \normalfont and Centre de Recerca Matemàtica, Campus de Bellaterra, E-08193 Cerdanyola del Vallès, Spain
- ORCID: 0000-0003-4422-6418
- Email: David.Marin@uab.cat
- Jean-François Mattei
- Affiliation: Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France
- Email: jean-francois.mattei@math.univ-toulouse.fr
- Eliane Salem
- Affiliation: Sorbonne Université, Université de Paris, CNRS, Institut de Mathématiques de Jussieu - Paris Rive Gauche, F-75005 Paris, France
- MR Author ID: 153390
- Email: eliane.salem@imj-prg.fr
- Received by editor(s): March 23, 2023
- Received by editor(s) in revised form: April 3, 2024
- Published electronically: August 16, 2024
- Additional Notes: The first author was supported by the Spanish Ministry of Science, Innovation and Universities, through grant PID2021-125625NB-I00 and by the Agency for Management of University and Research Grants of Catalonia through the grants 2017SGR1725 and 2021SGR01015. This work was also supported by the Spanish State Research Agency, through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-001084-M). The third author was supported by the CNRS through a delegation.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 7309-7335
- MSC (2020): Primary 37F75; Secondary 32M25, 32S50, 32S65, 34Mxx
- DOI: https://doi.org/10.1090/tran/9250