Weighted estimates for the Bergman projection on planar domains
HTML articles powered by AMS MathViewer
- by A. Walton Green and Nathan A. Wagner;
- Trans. Amer. Math. Soc. 377 (2024), 8023-8048
- DOI: https://doi.org/10.1090/tran/9233
- Published electronically: August 9, 2024
- HTML | PDF | Request permission
Abstract:
We investigate weighted Lebesgue space estimates for the Bergman projection on a simply connected planar domain via the domain’s Riemann map. We extend the bounds which follow from a standard change-of-variable argument in two ways. First, we provide a regularity condition on the Riemann map, which turns out to be necessary in the case of uniform domains, in order to obtain the full range of weighted estimates for the Bergman projection for weights in a Békollè-Bonami-type class. Second, by slightly strengthening our condition on the Riemann map, we obtain the weighted weak-type (1,1) estimate as well. Our proofs draw on techniques from both conformal mapping and dyadic harmonic analysis.References
- Kari Astala, Tadeusz Iwaniec, and Gaven Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Mathematical Series, vol. 48, Princeton University Press, Princeton, NJ, 2009. MR 2472875
- Alexandru Aleman, Sandra Pott, and María Carmen Reguera, Characterizations of a limiting class $B_\infty$ of Békollé-Bonami weights, Rev. Mat. Iberoam. 35 (2019), no. 6, 1677–1692. MR 4029779, DOI 10.4171/rmi/1097
- David Békollé, Projections sur des espaces de fonctions holomorphes dans des domaines plans, Canad. J. Math. 38 (1986), no. 1, 127–157 (French). MR 835039, DOI 10.4153/CJM-1986-007-1
- David Bekollé and Aline Bonami, Inégalités à poids pour le noyau de Bergman, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 18, A775–A778 (French, with English summary). MR 497663
- David Bekollé, Inégalité à poids pour le projecteur de Bergman dans la boule unité de $\textbf {C}^{n}$, Studia Math. 71 (1981/82), no. 3, 305–323 (French). MR 667319, DOI 10.4064/sm-71-3-305-323
- Aline Bonami and Noël Lohoué, Projecteurs de Bergman et Szegő pour une classe de domaines faiblement pseudo-convexes et estimations $L^{p}$, Compositio Math. 46 (1982), no. 2, 159–226 (French). MR 659922
- Alexander Borichev, On the Bekollé-Bonami condition, Math. Ann. 328 (2004), no. 3, 389–398. MR 2036327, DOI 10.1007/s00208-003-0488-8
- Jacob Burbea, The Bergman projection on weighted norm spaces, Canadian J. Math. 32 (1980), no. 4, 979–986. MR 590660, DOI 10.4153/CJM-1980-075-5
- Jacob Burbea, The Bergman and Schiffer transforms on weighted norm spaces, Studia Math. 76 (1983), no. 2, 153–161. MR 730017, DOI 10.4064/sm-76-2-153-161
- José M. Conde-Alonso and Guillermo Rey, A pointwise estimate for positive dyadic shifts and some applications, Math. Ann. 365 (2016), no. 3-4, 1111–1135. MR 3521084, DOI 10.1007/s00208-015-1320-y
- D. Cruz-Uribe, J. M. Martell, and C. Pérez, Weighted weak-type inequalities and a conjecture of Sawyer, Int. Math. Res. Not. 30 (2005), 1849–1871. MR 2172941, DOI 10.1155/IMRN.2005.1849
- David V. Cruz-Uribe, José Maria Martell, and Carlos Pérez, Weights, extrapolation and the theory of Rubio de Francia, Operator Theory: Advances and Applications, vol. 215, Birkhäuser/Springer Basel AG, Basel, 2011. MR 2797562, DOI 10.1007/978-3-0348-0072-3
- A. Dayan, A. Llinares, and K.M. Perfekt, Restrictions of Békollé–Bonami weights and Bloch functions, arXiv:2308.04859 (2023).
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
- F. W. Gehring, The $L^{p}$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265–277. MR 402038, DOI 10.1007/BF02392268
- Håkan Hedenmalm, The dual of a Bergman space on simply connected domains, J. Anal. Math. 88 (2002), 311–335. Dedicated to the memory of Tom Wolff. MR 1979775, DOI 10.1007/BF02786580
- Zhenghui Huo and Brett D. Wick, Weighted estimates of the Bergman projection with matrix weights, Recent progress in function theory and operator theory, Contemp. Math., vol. 799, Amer. Math. Soc., [Providence], RI, [2024] ©2024, pp. 53–73. MR 4740834, DOI 10.1090/conm/799/16020
- Tuomas Hytönen, The sharp weighted bound for general Calderón-Zygmund operators, Ann. Math. , posted on (2012), 1473–1506., DOI 10.4007/annals.2012.175.3.9
- Fritz John, Rotation and strain, Comm. Pure Appl. Math. 14 (1961), 391–413. MR 138225, DOI 10.1002/cpa.3160140316
- R. Johnson and C. J. Neugebauer, Homeomorphisms preserving $A_p$, Rev. Mat. Iberoamericana 3 (1987), no. 2, 249–273. MR 990859, DOI 10.4171/RMI/50
- Peter W. Jones, Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), no. 1, 41–66. MR 554817, DOI 10.1512/iumj.1980.29.29005
- Peter W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1981), no. 1-2, 71–88. MR 631089, DOI 10.1007/BF02392869
- Peter W. Jones, Homeomorphisms of the line which preserve BMO, Ark. Mat. 21 (1983), no. 2, 229–231. MR 727346, DOI 10.1007/BF02384312
- Michael T. Lacey, An elementary proof of the $A_2$ bound, Israel J. Math. 217 (2017), no. 1, 181–195. MR 3625108, DOI 10.1007/s11856-017-1442-x
- Loredana Lanzani and Elias M. Stein, Szegö and Bergman projections on non-smooth planar domains, J. Geom. Anal. 14 (2004), no. 1, 63–86. MR 2030575, DOI 10.1007/BF02921866
- Andrei K. Lerner, A simple proof of the $A_2$ conjecture, Int. Math. Res. Not. IMRN 14 (2013), 3159–3170. MR 3085756, DOI 10.1093/imrn/rns145
- Andrei K. Lerner and Fedor Nazarov, Intuitive dyadic calculus: the basics, Expo. Math. 37 (2019), no. 3, 225–265. MR 4007575, DOI 10.1016/j.exmath.2018.01.001
- Adem Limani and Artur Nicolau, Bloch functions and Bekollé-Bonami weights, Indiana Univ. Math. J. 72 (2023), no. 2, 381–407. MR 4596182, DOI 10.1512/iumj.2023.72.9279
- Kabe Moen, Sharp weighted bounds without testing or extrapolation, Arch. Math. (Basel) 99 (2012), no. 5, 457–466. MR 3000426, DOI 10.1007/s00013-012-0453-4
- Benjamin Muckenhoupt and Richard L. Wheeden, Some weighted weak-type inequalities for the Hardy-Littlewood maximal function and the Hilbert transform, Indiana Univ. Math. J. 26 (1977), no. 5, 801–816. MR 447956, DOI 10.1512/iumj.1977.26.26065
- Ch. Pommerenke, On univalent functions, Bloch functions and VMOA, Math. Ann. 236 (1978), no. 3, 199–208. MR 492206, DOI 10.1007/BF01351365
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
- Sandra Pott and Maria Carmen Reguera, Sharp Békollé estimates for the Bergman projection, J. Funct. Anal. 265 (2013), no. 12, 3233–3244. MR 3110501, DOI 10.1016/j.jfa.2013.08.018
- Rob Rahm, Edgar Tchoundja, and Brett D. Wick, Weighted estimates for the Berezin transform and Bergman projection on the unit ball, Math. Z. 286 (2017), no. 3-4, 1465–1478. MR 3671584, DOI 10.1007/s00209-016-1809-4
- E. Sawyer, A weighted weak type inequality for the maximal function, Proc. Amer. Math. Soc. 93 (1985), no. 4, 610–614. MR 776188, DOI 10.1090/S0002-9939-1985-0776188-1
- Cody B. Stockdale and Nathan A. Wagner, Weighted theory of Toeplitz operators on the Bergman space, Math. Z. 305 (2023), no. 1, Paper No. 10, 29. MR 4632204, DOI 10.1007/s00209-023-03347-x
- Nathan A. Wagner, Some results for the Szegő and Bergman projections on planar domains, Recent developments in harmonic analysis and its applications, Contemp. Math., vol. 792, Amer. Math. Soc., [Providence], RI, [2024] ©2024, pp. 101–123. MR 4694178, DOI 10.1090/conm/792/15896
- Kehe Zhu, Operator theory in function spaces, 2nd ed., Mathematical Surveys and Monographs, vol. 138, American Mathematical Society, Providence, RI, 2007. MR 2311536, DOI 10.1090/surv/138
Bibliographic Information
- A. Walton Green
- Affiliation: Department of Mathematics, Washington University in Saint Louis, 1 Brookings Drive, Saint Louis, Missouri 63130
- MR Author ID: 1320623
- ORCID: 0000-0003-2649-9455
- Email: awgreen@wustl.edu
- Nathan A. Wagner
- Affiliation: Department of Mathematics, Brown University, 151 Thayer Street, Providence, Rhode Island 02912
- MR Author ID: 1177526
- ORCID: 0000-0003-0096-1541
- Email: nathan_wagner@brown.edu
- Received by editor(s): October 4, 2023
- Received by editor(s) in revised form: March 29, 2024, and May 17, 2024
- Published electronically: August 9, 2024
- Additional Notes: The first author’s research was partially supported by NSF grant DMS-2202813.
The second author’s research was partially supported by NSF grant DMS-2203272. - © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 8023-8048
- MSC (2020): Primary 30H20, 42B20; Secondary 30C20
- DOI: https://doi.org/10.1090/tran/9233