Equivariant $\mathcal {D}$-modules on $2\times 2\times n$ hypermatrices
HTML articles powered by AMS MathViewer
- by András C. Lőrincz and Michael Perlman;
- Trans. Amer. Math. Soc. 377 (2024), 8125-8178
- DOI: https://doi.org/10.1090/tran/9240
- Published electronically: September 3, 2024
- HTML | PDF | Request permission
Abstract:
We study $\mathcal {D}$-modules and related invariants on the space of $2\times 2\times n$ hypermatrices for $n\geq 3$, which has finitely many orbits under the action of $G=GL_2(\mathbb {C}) \times GL_2(\mathbb {C}) \times GL_n(\mathbb {C})$. We describe the category of coherent $G$-equivariant $\mathcal {D}$-modules as the category of representations of a quiver with relations. We classify the simple equivariant $\mathcal {D}$-modules, determine their characteristic cycles and find special representations that appear in their $G$-structures. We determine the explicit $\mathcal {D}$-module structure of the local cohomology groups with supports given by orbit closures. As a consequence, we calculate the Lyubeznik numbers and intersection cohomology groups of the orbit closures. All but one of the orbit closures have rational singularities: we use local cohomology to prove that the one exception is neither normal nor Cohen–Macaulay. While our results display special behavior in the cases $n=3$ and $n=4$, they are completely uniform for $n\geq 5$.References
- Pramod N. Achar, Perverse sheaves and applications to representation theory, Mathematical Surveys and Monographs, vol. 258, American Mathematical Society, Providence, RI, [2021] ©2021. MR 4337423, DOI 10.1090/surv/258
- M. Hochster and John A. Eagon, Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020–1058. MR 302643, DOI 10.2307/2373744
- David Eisenbud and Joe Harris, 3264 and all that—a second course in algebraic geometry, Cambridge University Press, Cambridge, 2016. MR 3617981, DOI 10.1017/CBO9781139062046
- I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants and multidimensional determinants, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008. Reprint of the 1994 edition. MR 2394437
- R. García López and C. Sabbah, Topological computation of local cohomology multiplicities, Collect. Math. 49 (1998), no. 2–3, 317–324. Dedicated to the memory of Fernando Serrano.
- Daniel R. Grayson and Michael E. Stillman, Macaulay2, a software system for research in algebraic geometry.
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- Robin Hartshorne, Local cohomology, Lecture Notes in Mathematics, No. 41, Springer-Verlag, Berlin-New York, 1967. A seminar given by A. Grothendieck, Harvard University, Fall, 1961. MR 224620, DOI 10.1007/BFb0073971
- Robin Hartshorne and Claudia Polini, Simple $\mathcal {D}$-module components of local cohomology modules, J. Algebra 571 (2021), 232–257. MR 4200718, DOI 10.1016/j.jalgebra.2018.09.005
- Ryoshi Hotta, Kiyoshi Takeuchi, and Toshiyuki Tanisaki, $D$-modules, perverse sheaves, and representation theory, Progress in Mathematics, vol. 236, Birkhäuser Boston, Inc., Boston, MA, 2008. Translated from the 1995 Japanese edition by Takeuchi. MR 2357361, DOI 10.1007/978-0-8176-4523-6
- V. G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), no. 1, 190–213. MR 575790, DOI 10.1016/0021-8693(80)90141-6
- Masaki Kashiwara and Takahiro Kawai, On holonomic systems of microdifferential equations. III. Systems with regular singularities, Publ. Res. Inst. Math. Sci. 17 (1981), no. 3, 813–979. MR 650216, DOI 10.2977/prims/1195184396
- George R. Kempf, Images of homogeneous vector bundles and varieties of complexes, Bull. Amer. Math. Soc. 81 (1975), no. 5, 900–901. MR 384817, DOI 10.1090/S0002-9904-1975-13878-X
- Ryan Kinser and András C. Lőrincz, Representation varieties of algebras with nodes, J. Inst. Math. Jussieu 21 (2022), no. 6, 2215–2245. MR 4515294, DOI 10.1017/S1474748021000219
- J. M. Landsberg, Tensors: geometry and applications, Graduate Studies in Mathematics, vol. 128, American Mathematical Society, Providence, RI, 2012. MR 2865915, DOI 10.1090/gsm/128
- Stephen Lovett, Resolutions of orthogonal and symplectic analogues of determinantal ideals, J. Algebra 311 (2007), no. 1, 282–298. MR 2309889, DOI 10.1016/j.jalgebra.2006.10.018
- András Cristian Lőrincz, Decompositions of Bernstein-Sato polynomials and slices, Transform. Groups 25 (2020), no. 2, 577–607. MR 4098876, DOI 10.1007/s00031-019-09526-7
- András Cristian Lőrincz, On the collapsing of homogeneous bundles in arbitrary characteristic, Ann. Sci. Éc. Norm. Supér. (4) 56 (2023), no. 5, 1313–1337 (English, with English and French summaries). MR 4706497
- András Cristian Lőrincz, Singularities of orthogonal and symplectic determinantal varieties, arXiv:2311.07549 (2023).
- András C. Lőrincz and Michael Perlman, Equivariant $\mathcal D$-modules on alternating senary 3-tensors, Nagoya Math. J. 243 (2021), 61–82. MR 4298653, DOI 10.1017/nmj.2019.33
- Jiamin Li and Michael Perlman, Socle degrees for local cohomology modules of thickenings of maximal minors and sub-maximal Pfaffians, Proc. Amer. Math. Soc. 152 (2024), no. 2, 599–615. MR 4683843, DOI 10.1090/proc/16645
- András C. Lőrincz and Claudiu Raicu, Iterated local cohomology groups and Lyubeznik numbers for determinantal rings, Algebra Number Theory 14 (2020), no. 9, 2533–2569. MR 4172715, DOI 10.2140/ant.2020.14.2533
- András C. Lőrincz, Claudiu Raicu, and Jerzy Weyman, Equivariant $\mathcal D$-modules on binary cubic forms, Comm. Algebra 47 (2019), no. 6, 2457–2487. MR 3957110, DOI 10.1080/00927872.2018.1492590
- Gennady Lyubeznik, Anurag K. Singh, and Uli Walther, Local cohomology modules supported at determinantal ideals, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 11, 2545–2578., DOI 10.4171/JEMS/648
- Domingo Luna, Slices étales, Sur les groupes algébriques, Supplément au Bull. Soc. Math. France, Tome 101, Soc. Math. France, Paris, 1973, pp. 81–105 (French). MR 342523, DOI 10.24033/msmf.110
- András C. Lőrincz and Uli Walther, On categories of equivariant $\mathcal {D}$-modules, Adv. Math. 351 (2019), 429–478. MR 3952575, DOI 10.1016/j.aim.2019.04.051
- András C. Lőrincz and Jerzy Weyman, Local cohomology on a subexceptional series of representations, Ann. Inst. Fourier (Grenoble) 73 (2023), no. 2, 747–782 (English, with English and French summaries). MR 4588964, DOI 10.5802/aif.3539
- Gennady Lyubeznik, Finiteness properties of local cohomology modules (an application of $D$-modules to commutative algebra), Invent. Math. 113 (1993), no. 1, 41–55. MR 1223223, DOI 10.1007/BF01244301
- Robert MacPherson and Kari Vilonen, Elementary construction of perverse sheaves, Invent. Math. 84 (1986), no. 2, 403–435. MR 833195, DOI 10.1007/BF01388812
- P. G. Parfenov, Orbits and their closures in the spaces $\mathbb {C}^{k_1}\otimes \dots \otimes \mathbb {C}^{k_r}$, Mat. Sb. 192 (2001), no. 1, 89–112 (Russian, with Russian summary); English transl., Sb. Math. 192 (2001), no. 1–2, 89–112.
- Michael Perlman, Equivariant $\mathcal {D}$-modules on $2\times 2\times 2$ hypermatrices, J. Algebra 544 (2020), 391–416. MR 4027737, DOI 10.1016/j.jalgebra.2019.09.030
- Michael Perlman, Equivariant $\mathcal {D}$-modules on $2\times 2\times 2$ hypermatrices, J. Algebra 544 (2020), 391–416. MR 4027737, DOI 10.1016/j.jalgebra.2019.09.030
- Claudiu Raicu, Secant varieties of Segre-Veronese varieties, Algebra Number Theory 6 (2012), no. 8, 1817–1868. MR 3033528, DOI 10.2140/ant.2012.6.1817
- Claudiu Raicu, Characters of equivariant $\mathcal {D}$-modules on spaces of matrices, Compos. Math. 152 (2016), no. 9, 1935–1965. MR 3568944, DOI 10.1112/S0010437X16007521
- Claudiu Raicu and Jerzy Weyman, Local cohomology with support in generic determinantal ideals, Algebra Number Theory 8 (2014), no. 5, 1231–1257. MR 3263142, DOI 10.2140/ant.2014.8.1231
- Claudiu Raicu and Jerzy Weyman, Local cohomology with support in ideals of symmetric minors and Pfaffians, J. Lond. Math. Soc. (2) 94 (2016), no. 3, 709–725. MR 3614925, DOI 10.1112/jlms/jdw056
- Morihiko Saito, On $b$-function, spectrum and rational singularity, Math. Ann. 295 (1993), no. 1, 51–74. MR 1198841, DOI 10.1007/BF01444876
- M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J. 65 (1977), 1–155. MR 430336, DOI 10.1017/S0027763000017633
- M. Sato, M. Kashiwara, T. Kimura, and T. Ōshima, Microlocal analysis of prehomogeneous vector spaces, Invent. Math. 62 (1980/81), no. 1, 117–179. MR 595585, DOI 10.1007/BF01391666
- Elisabetta Strickland, On the conormal bundle of the determinantal variety, J. Algebra 75 (1982), no. 2, 523–537. MR 653906, DOI 10.1016/0021-8693(82)90054-0
- Nicholas Switala, Lyubeznik numbers for nonsingular projective varieties, Bull. Lond. Math. Soc. 47 (2015), no. 1, 1–6. MR 3312957, DOI 10.1112/blms/bdu089
- Matteo Varbaro, Cohomological and projective dimensions, Compos. Math. 149 (2013), no. 7, 1203–1210. MR 3078644, DOI 10.1112/S0010437X12000899
- K. Vilonen, Perverse sheaves and finite-dimensional algebras, Trans. Amer. Math. Soc. 341 (1994), no. 2, 665–676. MR 1135104, DOI 10.1090/S0002-9947-1994-1135104-3
- Jerzy Weyman, Cohomology of vector bundles and syzygies, Cambridge Tracts in Mathematics, vol. 149, Cambridge University Press, Cambridge, 2003. MR 1988690, DOI 10.1017/CBO9780511546556
Bibliographic Information
- András C. Lőrincz
- Affiliation: David and Judi Proctor Department of Mathematics, University of Oklahoma, Norman, Oklahoma
- Email: lorincz@ou.edu
- Michael Perlman
- Affiliation: School of Mathematics, University of Minnesota - Twin Cities, Minneapolis, Minnesota
- MR Author ID: 1145761
- ORCID: 0000-0002-8970-1801
- Email: mperlman@umn.edu
- Received by editor(s): September 23, 2023
- Received by editor(s) in revised form: April 10, 2024, and May 28, 2024
- Published electronically: September 3, 2024
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 8125-8178
- MSC (2020): Primary 14F10, 14B15, 13D45, 13A50, 11S90
- DOI: https://doi.org/10.1090/tran/9240
- MathSciNet review: 4806206