Regularity of the Siciak-Zaharjuta extremal function on compact Kähler manifolds
HTML articles powered by AMS MathViewer
- by Ngoc Cuong Nguyen;
- Trans. Amer. Math. Soc. 377 (2024), 8091-8123
- DOI: https://doi.org/10.1090/tran/9241
- Published electronically: August 30, 2024
- HTML | PDF | Request permission
Abstract:
We prove that the regularity of the extremal function of a compact subset of a compact Kähler manifold is a local property, and that the continuity and Hölder continuity are equivalent to classical notions of the local $L$-regularity and the locally Hölder continuous property in pluripotential theory. As a consequence we give an effective characterization of the $(\mathscr {C}^\alpha , \mathscr {C}^{\alpha ’})$-regularity of compact sets, the notion introduced by Dinh, Ma and Nguyen [Ann. Sci. Éc. Norm. Supér. (4) 50 (2017), pp. 545–578]. Using this criterion all compact fat subanalytic sets in $\mathbb {R}^n$ are shown to be regular in this sense.References
- Muhammed Ali Alan, Weighted pluripotential theory, ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)–Indiana University. MR 2717832
- Herbert J. Alexander and B. A. Taylor, Comparison of two capacities in $\textbf {C}^{n}$, Math. Z. 186 (1984), no. 3, 407–417. MR 744831, DOI 10.1007/BF01174894
- M. Salah Baouendi, Peter Ebenfelt, and Linda Preiss Rothschild, Real submanifolds in complex space and their mappings, Princeton Mathematical Series, vol. 47, Princeton University Press, Princeton, NJ, 1999. MR 1668103, DOI 10.1515/9781400883967
- M. S. Baouendi and C. Goulaouic, Approximation polynomiale de fonctions $C^{\infty }$ et analytiques, Ann. Inst. Fourier (Grenoble) 21 (1971), no. 4, 149–173 (French, with English summary). MR 352790, DOI 10.5802/aif.396
- Mirosław Baran and Leokadia Bialas-Ciez, Hölder continuity of the Green function and Markov brothers’ inequality, Constr. Approx. 40 (2014), no. 1, 121–140. MR 3229997, DOI 10.1007/s00365-013-9224-0
- Mirosław Baran, Leokadia Bialas-Ciez, Raimondo Eggink, Agnieszka Kowalska, Béla Nagy, and RafałPierzchała, Selected open problems in potential approximation and potential theory, Dolomites Res. Notes Approx. 10 (2017), no. 2, Special Issue, 161–168. MR 3671144
- Eric Bedford, Survey of pluri-potential theory, Several complex variables (Stockholm, 1987/1988) Math. Notes, vol. 38, Princeton Univ. Press, Princeton, NJ, 1993, pp. 48–97. MR 1207855
- Eric Bedford and B. A. Taylor, A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), no. 1-2, 1–40. MR 674165, DOI 10.1007/BF02392348
- Robert J. Berman, From Monge-Ampère equations to envelopes and geodesic rays in the zero temperature limit, Math. Z. 291 (2019), no. 1-2, 365–394. MR 3936074, DOI 10.1007/s00209-018-2087-0
- Robert Berman and Sébastien Boucksom, Growth of balls of holomorphic sections and energy at equilibrium, Invent. Math. 181 (2010), no. 2, 337–394. MR 2657428, DOI 10.1007/s00222-010-0248-9
- Robert Berman, Sébastien Boucksom, and David Witt Nyström, Fekete points and convergence towards equilibrium measures on complex manifolds, Acta Math. 207 (2011), no. 1, 1–27. MR 2863909, DOI 10.1007/s11511-011-0067-x
- Robert Berman and Jean-Pierre Demailly, Regularity of plurisubharmonic upper envelopes in big cohomology classes, Perspectives in analysis, geometry, and topology, Progr. Math., vol. 296, Birkhäuser/Springer, New York, 2012, pp. 39–66. MR 2884031, DOI 10.1007/978-0-8176-8277-4_{3}
- Leokadia Bialas-Ciez and Raimondo Eggink, Jackson’s inequality in the complex plane and the Łojasiewicz-Siciak inequality of Green’s function, J. Approx. Theory 207 (2016), 46–59. MR 3494221, DOI 10.1016/j.jat.2016.02.011
- Leokadia Bialas-Ciez and Raimondo Eggink, Equivalence of the global and local Markov inequalities in the complex plane, Adv. Math. 345 (2019), 909–927. MR 3903644, DOI 10.1016/j.aim.2019.01.027
- Edward Bierstone and Pierre D. Milman, Semianalytic and subanalytic sets, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 5–42. MR 972342, DOI 10.1007/BF02699126
- T. Bloom, L. Bos, C. Christensen, and N. Levenberg, Polynomial interpolation of holomorphic functions in $\textbf {C}$ and $\textbf {C}^n$, Rocky Mountain J. Math. 22 (1992), no. 2, 441–470. MR 1180711, DOI 10.1216/rmjm/1181072740
- Zbigniew Błocki and Sławomir Kołodziej, On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc. 135 (2007), no. 7, 2089–2093. MR 2299485, DOI 10.1090/S0002-9939-07-08858-2
- Urban Cegrell, A local property of $L$-regular sets, Monatsh. Math. 93 (1982), no. 2, 111–115. MR 653101, DOI 10.1007/BF01301398
- U. Cegrell, S. Kolodziej, and A. Zeriahi, Subextension of plurisubharmonic functions with weak singularities, Math. Z. 250 (2005), no. 1, 7–22. MR 2136402, DOI 10.1007/s00209-004-0714-4
- Jianchun Chu and Bin Zhou, Optimal regularity of plurisubharmonic envelopes on compact Hermitian manifolds, Sci. China Math. 62 (2019), no. 2, 371–380. MR 3915068, DOI 10.1007/s11425-017-9173-0
- Jean-Pierre Demailly, Regularization of closed positive currents of type $(1,1)$ by the flow of a Chern connection, Contributions to complex analysis and analytic geometry, Aspects Math., E26, Friedr. Vieweg, Braunschweig, 1994, pp. 105–126. MR 1319346
- Jean-Pierre Demailly, Sławomir Dinew, Vincent Guedj, Hoang Hiep Pham, Sławomir Kołodziej, and Ahmed Zeriahi, Hölder continuous solutions to Monge-Ampère equations, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 4, 619–647. MR 3191972, DOI 10.4171/JEMS/442
- Eleonora Di Nezza and Chinh H. Lu, Generalized Monge-Ampère capacities, Int. Math. Res. Not. IMRN 16 (2015), 7287–7322. MR 3428962, DOI 10.1093/imrn/rnu166
- Nguyen Quang Dieu, Regularity of certain sets in $\Bbb C^n$, Ann. Polon. Math. 82 (2003), no. 3, 219–232. MR 2040807, DOI 10.4064/ap82-3-3
- Tien-Cuong Dinh, Xiaonan Ma, and Viêt-Anh Nguyên, Equidistribution speed for Fekete points associated with an ample line bundle, Ann. Sci. Éc. Norm. Supér. (4) 50 (2017), no. 3, 545–578 (English, with English and French summaries). MR 3665550, DOI 10.24033/asens.2327
- Vincent Guedj, Chinh H. Lu, and Ahmed Zeriahi, Plurisubharmonic envelopes and supersolutions, J. Differential Geom. 113 (2019), no. 2, 273–313. MR 4023293, DOI 10.4310/jdg/1571882428
- Vincent Guedj and Ahmed Zeriahi, Intrinsic capacities on compact Kähler manifolds, J. Geom. Anal. 15 (2005), no. 4, 607–639. MR 2203165, DOI 10.1007/BF02922247
- Vincent Guedj and Ahmed Zeriahi, Degenerate complex Monge-Ampère equations, EMS Tracts in Mathematics, vol. 26, European Mathematical Society (EMS), Zürich, 2017. MR 3617346, DOI 10.4171/167
- V. Guedj, S. Kolodziej, and A. Zeriahi, Hölder continuous solutions to Monge-Ampére equations, Bull. Lond. Math. Soc. 40 (2008), no. 6, 1070–1080. MR 2471956, DOI 10.1112/blms/bdn092
- Maciej Klimek, Pluripotential theory, London Mathematical Society Monographs. New Series, vol. 6, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1150978, DOI 10.1093/oso/9780198535683.001.0001
- Sławomir Kołodziej, The complex Monge-Ampère equation and pluripotential theory, Mem. Amer. Math. Soc. 178 (2005), no. 840, x+64. MR 2172891, DOI 10.1090/memo/0840
- Sławomir Kołodziej and Ngoc Cuong Nguyen, Stability and regularity of solutions of the Monge-Ampère equation on Hermitian manifolds, Adv. Math. 346 (2019), 264–304. MR 3910489, DOI 10.1016/j.aim.2019.02.004
- Sławomir Kołodziej and Ngoc Cuong Nguyen, The Dirichlet problem for the Monge-Ampère equation on Hermitian manifolds with boundary, Calc. Var. Partial Differential Equations 62 (2023), no. 1, Paper No. 1, 39. MR 4505144, DOI 10.1007/s00526-022-02336-y
- Nir Lev and Joaquim Ortega-Cerdà, Equidistribution estimates for Fekete points on complex manifolds, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 2, 425–464. MR 3459956, DOI 10.4171/JEMS/594
- Norm Levenberg, Approximation in $\Bbb C^N$, Surv. Approx. Theory 2 (2006), 92–140. MR 2276419, DOI 10.1021/ct0501607
- N. Levenberg, Weighted pluripotential theory results of Berman-Boucksom, Preprint, arXiv:1010.4035.
- Chinh H. Lu, Trong-Thuc Phung, and Tât-Dat Tô, Stability and Hölder regularity of solutions to complex Monge-Ampère equations on compact Hermitian manifolds, Ann. Inst. Fourier (Grenoble) 71 (2021), no. 5, 2019–2045 (English, with English and French summaries). MR 4398254, DOI 10.5802/aif.3436
- George Marinescu and Duc-Viet Vu, Bergman kernel functions associated to measures supported on totally real submanifolds, J. Reine Angew. Math. 810 (2024), 217–251. MR 4739245, DOI 10.1515/crelle-2024-0017
- W. Pawłucki and W. Pleśniak, Markov’s inequality and $C^\infty$ functions on sets with polynomial cusps, Math. Ann. 275 (1986), no. 3, 467–480. MR 858290, DOI 10.1007/BF01458617
- W. Pleśniak, A criterion of the $L$-regularity of compact sets in $\textbf {C}^{N}$, Zeszyty Nauk. Uniw. Jagielloń. Prace Mat. 21 (1979), 97–103. MR 542584
- Wiesław Pleśniak, $L$-regularity of subanalytic sets in $\textbf {R}^n$, Bull. Polish Acad. Sci. Math. 32 (1984), no. 11-12, 647–651 (English, with Russian summary). MR 786187
- W. Pleśniak, Recent progress in multivariate Markov inequality, Approximation theory, Monogr. Textbooks Pure Appl. Math., vol. 212, Dekker, New York, 1998, pp. 449–464. MR 1625243
- W. Pleśniak, Pluriregularity in polynomially bounded o-minimal structures, Univ. Iagel. Acta Math. 41 (2003), 205–214. MR 2084763
- W. Pleśniak, Siciak’s extremal function in complex and real analysis, Proceedings of Conference on Complex Analysis (Bielsko-Biała, 2001), 2003, pp. 37–46. MR 1972832, DOI 10.4064/ap80-0-2
- RafałPierzchała, Geometry of holomorphic mappings and Hölder continuity of the pluricomplex Green function, Math. Ann. 379 (2021), no. 3-4, 1363–1393. MR 4238267, DOI 10.1007/s00208-020-01963-0
- A. Sadullaev, A criterion for the algebraicity of analytic sets, Funkcional. Anal. i Priložen. 6 (1972), no. 1, 85–86 (Russian). MR 294698
- A. Sadullaev, Plurisubharmonic measures and capacities on complex manifolds, Uspekhi Mat. Nauk 36 (1981), no. 4(220), 53–105, 247 (Russian). MR 629683
- A. Sadullaev, Estimates of polynomials on analytic sets, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 3, 524–534, 671 (Russian). MR 661145
- Azimbay Sadullaev, Pluriregular compacts in $\Bbb P^n$, Topics in several complex variables, Contemp. Math., vol. 662, Amer. Math. Soc., Providence, RI, 2016, pp. 145–156. MR 3502934, DOI 10.1090/conm/662/13325
- Azimbay Sadullaev and Ahmed Zeriahi, Hölder regularity of generic manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16 (2016), no. 2, 369–382. MR 3559606
- Edward B. Saff and Vilmos Totik, Logarithmic potentials with external fields, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 316, Springer-Verlag, Berlin, 1997. Appendix B by Thomas Bloom. MR 1485778, DOI 10.1007/978-3-662-03329-6
- Józef Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (1962), 322–357. MR 143946, DOI 10.1090/S0002-9947-1962-0143946-5
- Józef Siciak, Extremal plurisubharmonic functions in $\textbf {C}^{n}$, Ann. Polon. Math. 39 (1981), 175–211. MR 617459, DOI 10.4064/ap-39-1-175-211
- J. Siciak, Extremal plurisubharmonic functions and capacities in $\bC ^n$, Sophia Kokyuroku in Math. 14, Sophia Univ., Tokyo. 1982
- Józef Siciak, Highly noncontinuable functions on polynomially convex sets, Univ. Iagel. Acta Math. 25 (1985), 95–107. MR 837828
- Józef Siciak, Wiener’s type sufficient conditions in $\mathbf C^N$, Univ. Iagel. Acta Math. 35 (1997), 47–74. MR 1458044
- Valentino Tosatti, Regularity of envelopes in Kähler classes, Math. Res. Lett. 25 (2018), no. 1, 281–289. MR 3818623, DOI 10.4310/mrl.2018.v25.n1.a12
- Duc-Viet Vu, Equidistribution rate for Fekete points on some real manifolds, Amer. J. Math. 140 (2018), no. 5, 1311–1355. MR 3862067, DOI 10.1353/ajm.2018.0033
- V. P. Zaharjuta, Extremal plurisubharmonic functions, orthogonal polynomials, and the Bernšteĭn-Walsh theorem for functions of several complex variables, Ann. Polon. Math. 33 (1976/77), no. 1-2, 137–148 (Russian). MR 444988
- A. Zeriahi, Remarks on the modulus of continuity of subharmonic functions, arXiv:2007.08399.
Bibliographic Information
- Ngoc Cuong Nguyen
- Affiliation: Department of Mathematical Sciences, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
- MR Author ID: 1074954
- ORCID: 0000-0001-7322-6527
- Email: cuongnn@kaist.ac.kr
- Received by editor(s): October 21, 2023
- Received by editor(s) in revised form: February 6, 2024, May 7, 2024, and May 23, 2024
- Published electronically: August 30, 2024
- Additional Notes: The author was partially supported by the National Research Foundation of Korea (NRF) grant no. 2021R1F1A1048185.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 8091-8123
- MSC (2020): Primary 32U35, 32Q15, 32V20, 32W20
- DOI: https://doi.org/10.1090/tran/9241