Cuntz algebra automorphisms: Graphs and stability of permutations
HTML articles powered by AMS MathViewer
- by Francesco Brenti, Roberto Conti and Gleb Nenashev;
- Trans. Amer. Math. Soc. 377 (2024), 8433-8476
- DOI: https://doi.org/10.1090/tran/9159
- Published electronically: September 17, 2024
- HTML | PDF | Request permission
Abstract:
We characterize the permutative automorphisms of the Cuntz algebra $\mathcal {O}_n$ (namely, stable permutations) in terms of two sequences of graphs that we associate to any permutation of a discrete hypercube $[n]^t$. As applications we show that in the limit of large $t$ (resp. $n$) almost all permutations are not stable, thus proving Conj. 12.5 of Brenti and Conti [Adv. Math. 381 (2021), p. 60], characterize (and enumerate) stable quadratic $4$ and $5$-cycles, as well as a notable class of stable quadratic $r$-cycles, i.e. those admitting a compatible cyclic factorization by stable transpositions. Some of our results use new combinatorial concepts that may be of independent interest.References
- Drew Armstrong, Generalized noncrossing partitions and combinatorics of Coxeter groups, Mem. Amer. Math. Soc. 202 (2009), no. 949, x+159. MR 2561274, DOI 10.1090/S0065-9266-09-00565-1
- James Emil Avery, Rune Johansen, and Wojciech Szymański, Visualizing automorphisms of graph algebras, Proc. Edinb. Math. Soc. (2) 61 (2018), no. 1, 215–249. MR 3774854, DOI 10.1017/S0013091517000189
- Francesco Brenti and Roberto Conti, Permutations, tensor products, and Cuntz algebra automorphisms, Adv. Math. 381 (2021), Paper No. 107590, 60. MR 4205709, DOI 10.1016/j.aim.2021.107590
- Francesco Brenti, Roberto Conti, and Gleb Nenashev, Permutative automorphisms of the Cuntz algebras: quadratic cycles, an involution and a box product, Adv. in Appl. Math. 143 (2023), Paper No. 102447, 32. MR 4500183, DOI 10.1016/j.aam.2022.102447
- Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779
- Roberto Conti, Jeong Hee Hong, and Wojciech Szymański, The restricted Weyl group of the Cuntz algebra and shift endomorphisms, J. Reine Angew. Math. 667 (2012), 177–191. MR 2929676, DOI 10.1515/crelle.2011.125
- Roberto Conti, Jeong Hee Hong, and Wojciech Szymański, The Weyl group of the Cuntz algebra, Adv. Math. 231 (2012), no. 6, 3147–3161. MR 2980494, DOI 10.1016/j.aim.2012.09.003
- Roberto Conti, Jason Kimberley, and Wojciech Szymański, More localized automorphisms of the Cuntz algebras, Proc. Edinb. Math. Soc. (2) 53 (2010), no. 3, 619–631. MR 2720241, DOI 10.1017/S0013091508000886
- Roberto Conti and Wojciech Szymański, Labeled trees and localized automorphisms of the Cuntz algebras, Trans. Amer. Math. Soc. 363 (2011), no. 11, 5847–5870. MR 2817412, DOI 10.1090/S0002-9947-2011-05234-7
- Joachim Cuntz, Simple $C^*$-algebras generated by isometries, Comm. Math. Phys. 57 (1977), no. 2, 173–185. MR 467330, DOI 10.1007/BF01625776
- J. Cuntz, Automorphisms of certain simple $C^{\ast }$-algebras, Quantum fields—algebras, processes (Proc. Sympos., Univ. Bielefeld, Bielefeld, 1978) Springer, Vienna, 1980, pp. 187–196. MR 601811
- Serge Dulucq and Jean-Guy Penaud, Cordes, arbres et permutations, Discrete Math. 117 (1993), no. 1-3, 89–105 (French, with English and French summaries). MR 1226133, DOI 10.1016/0012-365X(93)90326-O
- Ilijas Farah, All automorphisms of the Calkin algebra are inner, Ann. of Math. (2) 173 (2011), no. 2, 619–661. MR 2776359, DOI 10.4007/annals.2011.173.2.1
- Rudolf Haag, Local quantum physics, 2nd ed., Texts and Monographs in Physics, Springer-Verlag, Berlin, 1996. Fields, particles, algebras. MR 1405610, DOI 10.1007/978-3-642-61458-3
- Marc Noy, Enumeration of noncrossing trees on a circle, Proceedings of the 7th Conference on Formal Power Series and Algebraic Combinatorics (Noisy-le-Grand, 1995), 1998, pp. 301–313. MR 1603749, DOI 10.1016/S0012-365X(97)00121-0
- Gert K. Pedersen, $C^*$-algebras and their automorphism groups, Pure and Applied Mathematics (Amsterdam), Academic Press, London, 2018. Second edition of [ MR0548006]; Edited and with a preface by Søren Eilers and Dorte Olesen. MR 3839621
- N. J. A. Sloane, On-line encyclopedia of integer sequences, https://oeis.org.
- Richard P. Stanley, Enumerative combinatorics. Volume 1, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012. MR 2868112
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282, DOI 10.1017/CBO9780511609589
- M. Takesaki, Theory of operator algebras. I, Encyclopaedia of Mathematical Sciences, vol. 124, Springer-Verlag, Berlin, 2002. Reprint of the first (1979) edition; Operator Algebras and Non-commutative Geometry, 5. MR 1873025
- M. Takesaki, Theory of operator algebras. II, Encyclopaedia of Mathematical Sciences, vol. 125, Springer-Verlag, Berlin, 2003. Operator Algebras and Non-commutative Geometry, 6. MR 1943006, DOI 10.1007/978-3-662-10451-4
- M. Takesaki, Theory of operator algebras. III, Encyclopaedia of Mathematical Sciences, vol. 127, Springer-Verlag, Berlin, 2003. Operator Algebras and Non-commutative Geometry, 8. MR 1943007, DOI 10.1007/978-3-662-10453-8
Bibliographic Information
- Francesco Brenti
- Affiliation: Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, I-00133 Roma, Italy
- MR Author ID: 215806
- ORCID: 0000-0003-0627-9906
- Email: brenti@mat.uniroma2.it
- Roberto Conti
- Affiliation: Dipartimento di Scienze di Base e Applicate per l’Ingegneria, Sapienza Università di Roma, Via A. Scarpa 16, I-00161 Roma, Italy
- MR Author ID: 367324
- Email: roberto.conti@sbai.uniroma1.it
- Gleb Nenashev
- Affiliation: Department of Mathematics and Computer Science, St. Petersburg State University, 14 line of the VO 29B, 199178 St. Petersburg, Russia
- MR Author ID: 962713
- Email: glebnen@gmail.com
- Received by editor(s): September 1, 2023
- Received by editor(s) in revised form: January 25, 2024
- Published electronically: September 17, 2024
- Additional Notes: The first author was partially supported by MIUR Excellence Department Projects awarded to the Department of Mathematics of the University of Rome “Tor Vergata”, CUP E83C18000100006 and E83C23000330006.
The second author was partially supported by the Sapienza Ricerca Scientifica Projects “Algebre di operatori, analisi armonica, geometria noncommutativa ed applicazioni alla fisica quantistica, la combinatoria e la teoria dei numeri” (2019) and “Algebre di operatori, geometria noncommutativa, gruppi quantistici e applicazioni alla teoria quantistica dei campi, la combinatoria e la teoria dei numeri” (2020).
This material is based upon work supported by the National Science Foundation under Grant No. DMS-1439786 while the third author was in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI, during the Combinatorial Algebraic Geometry program. - © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 8433-8476
- MSC (2020): Primary 05E16, 05A05, 05A15; Secondary 46L40, 05E10
- DOI: https://doi.org/10.1090/tran/9159