One-ended spanning trees and definable combinatorics
HTML articles powered by AMS MathViewer
- by Matt Bowen, Antoine Poulin and Jenna Zomback;
- Trans. Amer. Math. Soc. 377 (2024), 8411-8431
- DOI: https://doi.org/10.1090/tran/9186
- Published electronically: September 16, 2024
- PDF | Request permission
Abstract:
Let $(X,\tau )$ be a Polish space with Borel probability measure $\mu$, and $G$ a locally finite one-ended Borel graph on $X$. We show that $G$ admits a Borel one-ended spanning tree generically. If $G$ is induced by a free Borel action of an amenable (resp., polynomial growth) group then we show the same result $\mu$-a.e. (resp., everywhere). Our results generalize recent work of Timár, as well as of Conley, Gaboriau, Marks, and Tucker-Drob, who proved this in the probability measure preserving setting. We apply our theorem to find Borel orientations in even-degree graphs and measurable and Baire measurable perfect matchings in regular bipartite graphs, refining theorems that were previously only known to hold for measure preserving graphs. In particular, we prove that bipartite one-ended $d$-regular Borel graphs admit Baire measurable perfect matchings.References
- Scott Adams, Trees and amenable equivalence relations, Ergodic Theory Dynam. Systems 10 (1990), no. 1, 1–14. MR 1053796, DOI 10.1017/S0143385700005368
- Sebastian Brandt, Yi-Jun Chang, Jan Grebík, Christoph Grunau, Václav Rozhoň, and Zoltán Vidnyánszky, Local problems on trees from the perspectives of distributed algorithms, finitary factors, and descriptive combinatorics, 13th Innovations in Theoretical Computer Science Conference, LIPIcs. Leibniz Int. Proc. Inform., vol. 215, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2022, pp. Art. No. 29, 26. MR 4459400
- Jérémie Brieussel and Antoine Gournay, Connectedness of spheres in Cayley graphs, Algebra Discrete Math. 26 (2018), no. 2, 190–246. MR 3909043
- Ferenc Bencs, Aranka Hrušková, and László Márton Tóth, Factor-of-iid Schreier decorations of lattices in Euclidean spaces, Discrete Math. 347 (2024), no. 9, Paper No. 114056, 20. MR 4746932, DOI 10.1016/j.disc.2024.114056
- Matthew Bowen, Gábor Kun, and Marcin Sabok, Perfect matchings in hyperfinite graphings, Preprint, arXiv:2106.01988, 2021.
- Itai Benjamini, Russell Lyons, Yuval Peres, and Oded Schramm, Uniform spanning forests, Ann. Probab. 29 (2001), no. 1, 1–65. MR 1825141, DOI 10.1214/aop/1008956321
- Matt Bowen and Felix Weilacher, Definable Kőnig theorems, Preprint, arXiv:2112.10222, 2021.
- A. Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynam. Systems 1 (1981), no. 4, 431–450 (1982). MR 662736, DOI 10.1017/s014338570000136x
- Clinton Conley, Damien Gaboriau, Andrew Marks, and Robin Tucker-Drob, One-ended spanning subforests and treeability of groups, Preprint, arXiv:2104.07431, 2021.
- Clinton T. Conley, Steve C. Jackson, Andrew S. Marks, Brandon M. Seward, and Robin D. Tucker-Drob, Borel asymptotic dimension and hyperfinite equivalence relations, Duke Math. J. 172 (2023), no. 16, 3175–3226. MR 4679959, DOI 10.1215/00127094-2022-0100
- Clinton T. Conley and Alexander S. Kechris, Measurable chromatic and independence numbers for ergodic graphs and group actions, Groups Geom. Dyn. 7 (2013), no. 1, 127–180. MR 3019078, DOI 10.4171/GGD/179
- Clinton T. Conley and Benjamin D. Miller, Measurable perfect matchings for acyclic locally countable Borel graphs, J. Symb. Log. 82 (2017), no. 1, 258–271. MR 3631286, DOI 10.1017/jsl.2016.44
- R. Dougherty, S. Jackson, and A. S. Kechris, The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. Soc. 341 (1994), no. 1, 193–225. MR 1149121, DOI 10.1090/S0002-9947-1994-1149121-0
- Gábor Elek, Finite graphs and amenability, J. Funct. Anal. 263 (2012), no. 9, 2593–2614. MR 2967301, DOI 10.1016/j.jfa.2012.08.021
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR 578656, DOI 10.1090/S0002-9947-1977-0578656-4
- Su Gao, Steve Jackson, Edward Krohne, and Brandon Seward, Borel combinatorics of abelian group actions, in preparation.
- Antoine Gournay, A remark on the connectedness of spheres in Cayley graphs, C. R. Math. Acad. Sci. Paris 352 (2014), no. 7-8, 573–576 (English, with English and French summaries). MR 3237806, DOI 10.1016/j.crma.2014.05.005
- Vadim A. Kaimanovich, Amenability, hyperfiniteness, and isoperimetric inequalities, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 9, 999–1004 (English, with English and French summaries). MR 1485618, DOI 10.1016/S0764-4442(97)89093-3
- Alexander S. Kechris and Benjamin D. Miller, Topics in orbit equivalence, Lecture Notes in Mathematics, vol. 1852, Springer-Verlag, Berlin, 2004. MR 2095154, DOI 10.1007/b99421
- Alexander S. Kechris and Andrew S. Marks, Descriptive graph combinatorics, 2016, preprint.
- A. S. Kechris, S. Solecki, and S. Todorcevic, Borel chromatic numbers, Adv. Math. 141 (1999), no. 1, 1–44. MR 1667145, DOI 10.1006/aima.1998.1771
- László Lovász, Large networks and graph limits, American Mathematical Society Colloquium Publications, vol. 60, American Mathematical Society, Providence, RI, 2012. MR 3012035, DOI 10.1090/coll/060
- Andrew Marks, A short proof of the Connes-Feldman-Weiss theorem.
- Timothée Marquis and Marcin Sabok, Hyperfiniteness of boundary actions of hyperbolic groups, Math. Ann. 377 (2020), no. 3-4, 1129–1153. MR 4126891, DOI 10.1007/s00208-020-02001-9
- Andrew Marks and Spencer Unger, Baire measurable paradoxical decompositions via matchings, Adv. Math. 289 (2016), 397–410. MR 3439691, DOI 10.1016/j.aim.2015.11.034
- Oleg Pikhurko, Borel combinatorics of locally finite graphs, Surveys in combinatorics 2021, London Math. Soc. Lecture Note Ser., vol. 470, Cambridge Univ. Press, Cambridge, 2021, pp. 267–319. MR 4273433
- Long Qian and Felix Weilacher, Descriptive combinatorics, computable combinatorics, and ASI algorithms, Preprint, arXiv:2206.08426, 2022.
- Riley Thornton, Orienting Borel graphs, Proc. Amer. Math. Soc. 150 (2022), no. 4, 1779–1793. MR 4375764, DOI 10.1090/proc/15742
- Ádám Timár, Boundary-connectivity via graph theory, Proc. Amer. Math. Soc. 141 (2013), no. 2, 475–480. MR 2996951, DOI 10.1090/S0002-9939-2012-11333-4
- Ádám Timár, One-ended spanning trees in amenable unimodular graphs, Electron. Commun. Probab. 24 (2019), Paper No. 72, 12. MR 4040939, DOI 10.1214/19-ecp274
- Ádám Timár, A factor matching of optimal tail between Poisson processes, Combinatorica 43 (2023), no. 2, 421–427. MR 4627316, DOI 10.1007/s00493-023-00051-6
- Ádám Timár, A nonamenable “factor” of a Euclidean space, Ann. Probab. 49 (2021), no. 3, 1427–1449. MR 4255149, DOI 10.1214/20-aop1485
Bibliographic Information
- Matt Bowen
- Affiliation: Mathematical Institute, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, England
- Email: matthew.bowen@maths.ox.ac.uk
- Antoine Poulin
- Affiliation: McGill University, 805 rue Sherbrooke O, H3A 0B9, Montréal, QC, Canada
- MR Author ID: 1382852
- Email: antoine.poulin@mail.mcgill.ca
- Jenna Zomback
- Affiliation: University of Maryland, 4176 Campus Dr, College Park, Maryland
- MR Author ID: 1499889
- Email: zomback@umd.edu
- Received by editor(s): May 3, 2023
- Received by editor(s) in revised form: January 22, 2024
- Published electronically: September 16, 2024
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 8411-8431
- MSC (2020): Primary 03E15, 05C70, 37A20
- DOI: https://doi.org/10.1090/tran/9186