Cohomology rings of extended powers and of free infinite loop spaces
HTML articles powered by AMS MathViewer
- by Lorenzo Guerra, Paolo Salvatore and Dev Sinha;
- Trans. Amer. Math. Soc. 377 (2024), 8515-8561
- DOI: https://doi.org/10.1090/tran/9198
- Published electronically: September 20, 2024
- HTML | PDF | Request permission
Abstract:
We calculate mod-$p$ cohomology of extended powers, and their group completions which are free infinite loop spaces. We consider the cohomology of all extended powers of a space together and identify a Hopf ring structure with divided powers within which cup product structure is more readily computable than on its own. We build on our previous calculations of cohomology of symmetric groups, which are the cohomology of extended powers of a point, the well-known calculation of homology, and new results on cohomology of symmetric groups with coefficients in the sign representation. We then use this framework to understand cohomology rings of related spaces such as infinite extended powers and free infinite loop spaces.References
- Greg Arone and Mark Mahowald, The Goodwillie tower of the identity functor and the unstable periodic homotopy of spheres, Invent. Math. 135 (1999), no. 3, 743–788. MR 1669268, DOI 10.1007/s002220050300
- Alejandro Adem and R. James Milgram, Cohomology of finite groups, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 309, Springer-Verlag, Berlin, 2004. MR 2035696, DOI 10.1007/978-3-662-06280-7
- M. André, Hopf algebras with divided powers, J. Algebra 18 (1971), 19–50. MR 277590, DOI 10.1016/0021-8693(71)90126-8
- Calista Bernard, Twisted homology operations for $E_\infty$-algebras, arXiv:2304.00
- Pierre Berthelot, Cohomologie cristalline des schémas de caractéristique $p>0$, Lecture Notes in Mathematics, Vol. 407, Springer-Verlag, Berlin-New York, 1974 (French). MR 384804
- R. R. Bruner, J. P. May, J. E. McClure, and M. Steinberger, $H_\infty$ ring spectra and their applications, Lecture Notes in Mathematics, vol. 1176, Springer-Verlag, Berlin, 1986. MR 836132, DOI 10.1007/BFb0075405
- Michael Barratt and Stewart Priddy, On the homology of non-connected monoids and their associated groups, Comment. Math. Helv. 47 (1972), 1–14. MR 314940, DOI 10.1007/BF02566785
- Séminaires de H. Cartan, 1953–1954. Chapters XVI–XIX and Séminaire Bourbaki, Massachusetts Institute of Technology, Mathematics Department, Cambridge, MA, 1955 (French). MR 79332
- Frederick R. Cohen, Thomas J. Lada, and J. Peter May, The homology of iterated loop spaces, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin-New York, 1976. MR 436146, DOI 10.1007/BFb0080464
- Nguyễn Việt Dũng, The modulo $2$ cohomology algebra of the wreath product $\Sigma _\infty \wr X$, Algebraic topology (San Feliu de Guíxols, 1990) Lecture Notes in Math., vol. 1509, Springer, Berlin, 1992, pp. 115–119. MR 1185965, DOI 10.1007/BFb0087505
- Samuel Eilenberg and Saunders Mac Lane, On the groups $H(\Pi ,n)$. II. Methods of computation, Ann. of Math. (2) 60 (1954), 49–139. MR 65162, DOI 10.2307/1969702
- Mark Feshbach, The mod 2 cohomology rings of the symmetric groups and invariants, Topology 41 (2002), no. 1, 57–84. MR 1871241, DOI 10.1016/S0040-9383(00)00021-5
- Greg Friedman, Anibal M. Medina-Mardones, Dev Sinha, Foundations of geometric cohomology: from co-orientations to product structures arXiv:2212.07482
- Søren Galatius, Mod $p$ homology of the stable mapping class group, Topology 43 (2004), no. 5, 1105–1132. MR 2079997, DOI 10.1016/j.top.2004.01.011
- Chad Giusti and Dev Sinha, Fox-Neuwirth cell structures and the cohomology of symmetric groups, in Configuration Spaces: Geometry, Combinators and Topology Centro di Ricerca Mathematica Ennio De Giorgi 14 (2012).
- Chad Giusti and Dev Sinha, Mod-two cohomology rings of alternating groups, J. Reine Angew. Math. 772 (2021), 1–51. MR 4227589, DOI 10.1515/crelle-2020-0016
- Chad Giusti, Paolo Salvatore, and Dev Sinha, The mod-2 cohomology rings of symmetric groups, J. Topol. 5 (2012), no. 1, 169–198. MR 2897052, DOI 10.1112/jtopol/jtr031
- Lorenzo Guerra, Hopf ring structure on the $\textrm {mod}\,p$ cohomology of symmetric groups, Algebr. Geom. Topol. 17 (2017), no. 2, 957–982. MR 3623678, DOI 10.2140/agt.2017.17.957
- Michiel Hazewinkel, Formal groups and applications, Pure and Applied Mathematics, vol. 78, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506881
- Hanna Hoffman, Dana Hunter, Kristy Pelatt, Sarah Peterson, Dev Sinha, and Courtney Thatcher, Homology of Eilenberg-Maclane spaces as divided powers Hopf rings, In preparation.
- Dana Hunter, The Curtis-Wellington spectral sequence through cohomology, arXiv:2111.01770, to appear in : Algebraic and Geometric Topology
- Nondas E. Kechagias, The transfer in mod-$P$ group cohomology between $\Sigma _P\int \Sigma _{P^{N-1}},\ \Sigma _{P^{N-1}}\int \Sigma _P$ and $\Sigma _{P^N}$, J. Homotopy Relat. Struct. 4 (2009), no. 1, 153–179. MR 2520991
- J. Peter May, A general algebraic approach to Steenrod operations, The Steenrod Algebra and its Applications (Proc. Conf. to Celebrate N. E. Steenrod’s Sixtieth Birthday, Battelle Memorial Inst., Columbus, Ohio, 1970) Lecture Notes in Math., Vol. 168, Springer, Berlin-New York, 1970, pp. 153–231. MR 281196
- R. James Milgram, The $\textrm {mod}\ 2$ spherical characteristic classes, Ann. of Math. (2) 92 (1970), 238–261. MR 263100, DOI 10.2307/1970836
- John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211–264. MR 174052, DOI 10.2307/1970615
- Goro Nishida, The nilpotency of elements of the stable homotopy groups of spheres, Manifolds—Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973) Math. Soc. Japan, Tokyo, 1975, pp. 285–289. MR 494093
- Norbert Roby, Les algèbres à puissances divisées, Bull. Sci. Math. (2) 89 (1965), 75–91 (French). MR 193127
- Douglas C. Ravenel and W. Stephen Wilson, The Morava $K$-theories of Eilenberg-Mac Lane spaces and the Conner-Floyd conjecture, Amer. J. Math. 102 (1980), no. 4, 691–748. MR 584466, DOI 10.2307/2374093
- Colette Schoeller, $\Gamma -H$-algèbres sur un corps, C. R. Acad. Sci. Paris Sér. A-B 265 (1967), A655–A658 (French). MR 224681
- Neil P. Strickland and Paul R. Turner, Rational Morava $E$-theory and $DS^0$, Topology 36 (1997), no. 1, 137–151. MR 1410468, DOI 10.1016/0040-9383(95)00073-9
- N. E. Steenrod, Homology groups of symmetric groups and reduced power operations, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 213–217. MR 54964, DOI 10.1073/pnas.39.3.213
- Emery Thomas, The generalized Pontrjagin cohomology operations and rings with divided powers, Mem. Amer. Math. Soc. 27 (1957), 82. MR 99029
- W. Stephen Wilson, Hopf rings in algebraic topology, Expo. Math. 18 (2000), no. 5, 369–388. MR 1802339
Bibliographic Information
- Lorenzo Guerra
- Affiliation: Università di Roma Tor Vergata, Italy
- Email: guerra@mat.uniroma2.it
- Paolo Salvatore
- Affiliation: Università di Roma Tor Vergata, Italy
- MR Author ID: 618246
- Email: salvator@mat.uniroma2.it
- Dev Sinha
- Affiliation: Department of Mathematics, University of Oregon
- MR Author ID: 681577
- ORCID: 0000-0003-4562-2236
- Email: dps@uoregon.edu
- Received by editor(s): April 14, 2023
- Received by editor(s) in revised form: February 21, 2024
- Published electronically: September 20, 2024
- Additional Notes: The first two authors acknowledge the MUR Excellence Department Project MatMod@TOV awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C23000330006.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 8515-8561
- MSC (2020): Primary 20J06, 20B30
- DOI: https://doi.org/10.1090/tran/9198