Finite measures of maximal entropy for an open set of partially hyperbolic diffeomorphisms
HTML articles powered by AMS MathViewer
- by Juan Carlos Mongez and Maria Jose Pacifico;
- Trans. Amer. Math. Soc. 377 (2024), 8695-8720
- DOI: https://doi.org/10.1090/tran/9230
- Published electronically: August 9, 2024
- HTML | PDF | Request permission
Abstract:
We consider partially hyperbolic diffeomorphisms $f$ with a one-dimensional central direction such that the unstable entropy is different from the stable entropy. Our main result proves that such maps have a finite number of ergodic measures of maximal entropy. Moreover, any $C^{1+}$ diffeomorphism near $f$ in the $C^1$ topology possesses at most the same number of ergodic measures of maximal entropy. These results extend the findings in Buzzi, Crovisier, and Sarig [Ann. of Math. (2) 195 (2022), pp. 421–508] to arbitrary dimensions and provides an open class of non-Axiom A systems of diffeomorphisms exhibiting a finite number of ergodic measures of maximal entropy. We believe our technique, essentially distinct from the one in Buzzi et al., is robust and may find applications in further contexts.References
- Viviane Baladi and Mark F. Demers, On the measure of maximal entropy for finite horizon Sinai billiard maps, J. Amer. Math. Soc. 33 (2020), no. 2, 381–449. MR 4073865, DOI 10.1090/jams/939
- Dmitri Burago, Yuri Burago, and Sergei Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. MR 1835418, DOI 10.1090/gsm/033
- K. Burns, J. Buzzi, T. Fisher, and N. Sawyer, Phase transitions for the geodesic flow of a rank one surface with nonpositive curvature, Dyn. Syst. 36 (2021), no. 3, 527–535. MR 4304640, DOI 10.1080/14689367.2021.1933914
- Jérôme Buzzi, Sylvain Crovisier, and Omri Sarig, Measures of maximal entropy for surface diffeomorphisms, Ann. of Math. (2) 195 (2022), no. 2, 421–508. MR 4387233, DOI 10.4007/annals.2022.195.2.2
- J. Buzzi, T. Fisher, M. Sambarino, and C. Vásquez, Maximal entropy measures for certain partially hyperbolic, derived from Anosov systems, Ergodic Theory Dynam. Systems 32 (2012), no. 1, 63–79. MR 2873158, DOI 10.1017/S0143385710000854
- Rufus Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414. MR 274707, DOI 10.1090/S0002-9947-1971-0274707-X
- Rufus Bowen, Entropy-expansive maps, Trans. Amer. Math. Soc. 164 (1972), 323–331. MR 285689, DOI 10.1090/S0002-9947-1972-0285689-X
- Rufus Bowen, Maximizing entropy for a hyperbolic flow, Math. Systems Theory 7 (1974), no. 4, 300–303. MR 385928, DOI 10.1007/BF01795948
- Aaron Brown, Smoothness of stable holonomies inside center-stable manifolds, Ergodic Theory Dynam. Systems 42 (2022), no. 12, 3593–3618. MR 4504676, DOI 10.1017/etds.2021.99
- Sylvain Crovisier and Enrique Pujals, Strongly dissipative surface diffeomorphisms, Comment. Math. Helv. 93 (2018), no. 2, 377–400. MR 3811756, DOI 10.4171/CMH/438
- Vaughn Climenhaga and Daniel J. Thompson, Unique equilibrium states for flows and homeomorphisms with non-uniform structure, Adv. Math. 303 (2016), 745–799. MR 3552538, DOI 10.1016/j.aim.2016.07.029
- Vaughn Climenhaga and Daniel J. Thompson, Beyond Bowen’s specification property, Thermodynamic formalism, Lecture Notes in Math., vol. 2290, Springer, Cham, [2021] ©2021, pp. 3–82. MR 4436821, DOI 10.1007/978-3-030-74863-0_{1}
- Vaughn Climenhaga, Todd Fisher, and Daniel J. Thompson, Equilibrium states for Mañé diffeomorphisms, Ergodic Theory Dynam. Systems 39 (2019), no. 9, 2433–2455. MR 3989124, DOI 10.1017/etds.2017.125
- William Cowieson and Lai-Sang Young, SRB measures as zero-noise limits, Ergodic Theory Dynam. Systems 25 (2005), no. 4, 1115–1138. MR 2158399, DOI 10.1017/S0143385704000604
- Lorenzo J. Díaz, Todd Fisher, Maria José Pacifico, and José L. Vieitez, Entropy-expansiveness for partially hyperbolic diffeomorphisms, Discrete Contin. Dyn. Syst. 32 (2012), no. 12, 4195–4207. MR 2966742, DOI 10.3934/dcds.2012.32.4195
- Katrin Gelfert and Rafael O. Ruggiero, Geodesic flows modeled by expansive flows: compact surfaces without conjugate points and continuous Green bundles, Ann. Inst. Fourier (Grenoble) 73 (2023), no. 6, 2605–2649 (English, with English and French summaries). MR 4661462, DOI 10.5802/aif.3574
- Huyi Hu, Yongxia Hua, and Weisheng Wu, Unstable entropies and variational principle for partially hyperbolic diffeomorphisms, Adv. Math. 321 (2017), 31–68. MR 3715705, DOI 10.1016/j.aim.2017.09.039
- M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Bull. Amer. Math. Soc. 76 (1970), 1015–1019. MR 292101, DOI 10.1090/S0002-9904-1970-12537-X
- Yongxia Hua, Radu Saghin, and Zhihong Xia, Topological entropy and partially hyperbolic diffeomorphisms, Ergodic Theory Dynam. Systems 28 (2008), no. 3, 843–862. MR 2422018, DOI 10.1017/S0143385707000405
- Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza. MR 1326374, DOI 10.1017/CBO9780511809187
- Gerhard Knieper, The uniqueness of the measure of maximal entropy for geodesic flows on rank $1$ manifolds, Ann. of Math. (2) 148 (1998), no. 1, 291–314. MR 1652924, DOI 10.2307/120995
- F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula, Ann. of Math. (2) 122 (1985), no. 3, 509–539. MR 819556, DOI 10.2307/1971328
- F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension, Ann. of Math. (2) 122 (1985), no. 3, 540–574. MR 819557, DOI 10.2307/1971329
- Gang Liao, Marcelo Viana, and Jiagang Yang, The entropy conjecture for diffeomorphisms away from tangencies, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 6, 2043–2060. MR 3120734, DOI 10.4171/JEMS/413
- Edward N. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sci. 20 (1963), no. 2, 130–141. MR 4021434, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
- Grigoriy A. Margulis, On some aspects of the theory of Anosov systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2004. With a survey by Richard Sharp: Periodic orbits of hyperbolic flows; Translated from the Russian by Valentina Vladimirovna Szulikowska. MR 2035655, DOI 10.1007/978-3-662-09070-1
- Ricardo Mañé, Contributions to the stability conjecture, Topology 17 (1978), no. 4, 383–396. MR 516217, DOI 10.1016/0040-9383(78)90005-8
- Martin Andersson and Carlos H. Vásquez, Statistical stability of mostly expanding diffeomorphisms, Ann. Inst. H. Poincaré C Anal. Non Linéaire 37 (2020), no. 6, 1245–1270 (English, with English and French summaries). MR 4168916, DOI 10.1016/j.anihpc.2020.04.007
- M. Misiurewicz, Diffeomorphism without any measure with maximal entropy, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 903–910 (English, with Russian summary). MR 336764
- J. C. Mongez and M. J. Pacifico, Robustness and uniqueness of equilibrium states for certain partially hyperbolic systems, arXiv:2306.12323, 2023.
- Sheldon E. Newhouse, Hyperbolic limit sets, Trans. Amer. Math. Soc. 167 (1972), 125–150. MR 295388, DOI 10.1090/S0002-9947-1972-0295388-6
- Sheldon E. Newhouse, Continuity properties of entropy, Ann. of Math. (2) 129 (1989), no. 2, 215–235. MR 986792, DOI 10.2307/1971492
- Sheldon E. Newhouse, Entropy in smooth dynamical systems, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) Math. Soc. Japan, Tokyo, 1991, pp. 1285–1294. MR 1159313
- Sheldon E. Newhouse and Lai-Sang Young, Dynamics of certain skew products, Geometric dynamics (Rio de Janeiro, 1981) Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 611–629. MR 730289, DOI 10.1007/BFb0061436
- V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 179–210 (Russian). MR 240280
- Snir Ben Ovadia, Symbolic dynamics for non-uniformly hyperbolic diffeomorphisms of compact smooth manifolds, J. Mod. Dyn. 13 (2018), 43–113. MR 3918259, DOI 10.3934/jmd.2018013
- Maria Jose Pacifico, Fan Yang, and Jiagang Yang, Existence and uniqueness of equilibrium states for systems with specification at a fixed scale: an improved Climenhaga-Thompson criterion, Nonlinearity 35 (2022), no. 12, 5963–5992. MR 4500887, DOI 10.1088/1361-6544/ac956f
- M. J. Pacifico, F. Yang, and J. Yang, Equilibrium states for the classical Lorenz attractor and sectional-hyperbolic attractors in higher dimensions, preprint in arXiv:2209.10784.
- Ja. B. Pesin, Families of invariant manifolds that correspond to nonzero characteristic exponents, Izv. Akad. Nauk SSSR Ser. Mat. 40 (1976), no. 6, 1332–1379, 1440 (Russian). MR 458490
- V. A. Pliss, On a conjecture of Smale, Differencial′nye Uravnenija 8 (1972), 268–282 (Russian). MR 299909
- F. Rodriguez Hertz, M. A. Rodriguez Hertz, A. Tahzibi, and R. Ures, Maximizing measures for partially hyperbolic systems with compact center leaves, Ergodic Theory Dynam. Systems 32 (2012), no. 2, 825–839. MR 2901373, DOI 10.1017/S0143385711000757
- V. A. Rohlin, On the fundamental ideas of measure theory, Mat. Sbornik N.S. 25(67) (1949), 107–150 (Russian). MR 30584
- D. Ruelle, Statistical mechanics of a one-dimensional lattice gas, Comm. Math. Phys. 9 (1968), 267–278. MR 234697, DOI 10.1007/BF01654281
- David Ruelle, Thermodynamic formalism, Encyclopedia of Mathematics and its Applications, vol. 5, Addison-Wesley Publishing Co., Reading, MA, 1978. The mathematical structures of classical equilibrium statistical mechanics; With a foreword by Giovanni Gallavotti and Gian-Carlo Rota. MR 511655
- Omri M. Sarig, Symbolic dynamics for surface diffeomorphisms with positive entropy, J. Amer. Math. Soc. 26 (2013), no. 2, 341–426. MR 3011417, DOI 10.1090/S0894-0347-2012-00758-9
- M. Shub, Global stability of dynamical systems, Springer Science $\&$ Business Media, 2013.
- C. Liang, R. Saghin, F. Yang and J. Yang, Shub’s example revisited, arXiv:2303.17775
- Y. Sinai. Gibbs measures in ergodic theory. Russian Mathematical Surveys, 27(4):21, 1972.
- Ali Tahzibi, Unstable entropy in smooth ergodic theory, Nonlinearity 34 (2021), no. 8, R75–R118. MR 4287979, DOI 10.1088/1361-6544/abd7c7
- Raúl Ures, Marcelo Viana, and Jiagang Yang, Maximal entropy measures of diffeomorphisms of circle fiber bundles, J. Lond. Math. Soc. (2) 103 (2021), no. 3, 1016–1034. MR 4245829, DOI 10.1112/jlms.12399
- Raul Ures, Marcelo Viana, Fan Yang, and Jiagang Yang, Thermodynamical $u$-formalism I: measures of maximal $u$-entropy for maps that factor over Anosov, Ergodic Theory Dynam. Systems 44 (2024), no. 1, 290–333. MR 4676212, DOI 10.1017/etds.2023.8
- Raul Ures, Marcelo Viana, Fan Yang, and Jiagang Yang, Maximal transverse measures of expanding foliations, Comm. Math. Phys. 405 (2024), no. 5, Paper No. 121, 40. MR 4742198, DOI 10.1007/s00220-024-04993-w
- Jiagang Yang, Entropy along expanding foliations, Adv. Math. 389 (2021), Paper No. 107893, 39. MR 4289036, DOI 10.1016/j.aim.2021.107893
- Y. Yomdin, Volume growth and entropy, Israel J. Math. 57 (1987), no. 3, 285–300. MR 889979, DOI 10.1007/BF02766215
Bibliographic Information
- Juan Carlos Mongez
- Affiliation: Instituto de Matemática, Universidade Federal do Rio de Janeiro, Cidade Universitária - Ilha do Fundão, Rio de Janeiro 21945-909, Brazil
- ORCID: 0009-0002-1738-4808
- Email: jmongez@im.ufrj.br
- Maria Jose Pacifico
- Affiliation: Instituto de Matemática, Universidade Federal do Rio de Janeiro, Cidade Universitária - Ilha do Fundão, Rio de Janeiro 21945-909, Brazil
- MR Author ID: 196844
- ORCID: 0000-0002-7677-5668
- Email: pacifico@im.ufrj.br
- Received by editor(s): February 19, 2024
- Received by editor(s) in revised form: May 5, 2024
- Published electronically: August 9, 2024
- Additional Notes: The authors were partially supported by CAPES-Finance Code 001. The second author was partially supported by CNPq-Brazil Grant No. 302565/2017-5, FAPERJ (CNE) Grant-Brazil No. E-26/202.850/2018(239069), Pronex: E-26/010.001252/2016. The first author was partially supported by FAPERJ (Bolsa Nota 10) Grant-Brazil E-26/202.301/2022(276542)
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 8695-8720
- MSC (2020): Primary 37C40, 37A35
- DOI: https://doi.org/10.1090/tran/9230