The infinitesimal earthquake theorem for vector fields on the circle
HTML articles powered by AMS MathViewer
- by Farid Diaf;
- Trans. Amer. Math. Soc. 377 (2024), 8721-8767
- DOI: https://doi.org/10.1090/tran/9243
- Published electronically: September 17, 2024
- HTML | PDF | Request permission
Abstract:
We prove that any continuous vector field on a circle is the extension in a suitable sense, of a unique infinitesimal earthquake of the hyperbolic plane. Furthermore, we obtain other extension results when the vector field is assumed only to be upper or lower semicontinuous. This leads to a generalization of Kerckhoff’s and Gardiner’s infinitesimal earthquake theorems to a broader setting, using a completely novel approach. The proof is based on the geometry of the dual of Minkowski three-space, also called Half-pipe three-geometry. In this way, we obtain a simple characterization of Zygmund vector fields on the circle in terms of width of convex hulls.References
- Lars Andersson, Thierry Barbot, Riccardo Benedetti, Francesco Bonsante, William M. Goldman, François Labourie, Kevin P. Scannell, and Jean-Marc Schlenker, Notes on: “Lorentz spacetimes of constant curvature” [Geom. Dedicata 126 (2007), 3–45; MR2328921] by G. Mess, Geom. Dedicata 126 (2007), 47–70. MR 2328922, DOI 10.1007/s10711-007-9164-6
- Thierry Barbot, Globally hyperbolic flat space-times, J. Geom. Phys. 53 (2005), no. 2, 123–165. MR 2110829, DOI 10.1016/j.geomphys.2004.05.002
- Thierry Barbot and François Fillastre, Quasi-Fuchsian co-Minkowski manifolds, In the tradition of Thurston—geometry and topology, Springer, Cham, [2020] ©2020, pp. 645–703. MR 4264589, DOI 10.1007/978-3-030-55928-1_{1}6
- Riccardo Benedetti and Francesco Bonsante, Canonical Wick rotations in 3-dimensional gravity, Mem. Amer. Math. Soc. 198 (2009), no. 926, viii+164. MR 2499272, DOI 10.1090/memo/0926
- Francis Bonahon, Geodesic laminations with transverse Hölder distributions, Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 2, 205–240. MR 1432054, DOI 10.1016/S0012-9593(97)89919-3
- Francesco Bonsante, Flat spacetimes with compact hyperbolic Cauchy surfaces, J. Differential Geom. 69 (2005), no. 3, 441–521. MR 2170277
- Francesco Bonsante and Jean-Marc Schlenker, AdS manifolds with particles and earthquakes on singular surfaces, Geom. Funct. Anal. 19 (2009), no. 1, 41–82. MR 2507219, DOI 10.1007/s00039-009-0716-9
- Francesco Bonsante and Jean-Marc Schlenker, Maximal surfaces and the universal Teichmüller space, Invent. Math. 182 (2010), no. 2, 279–333. MR 2729269, DOI 10.1007/s00222-010-0263-x
- Francesco Bonsante and Jean-Marc Schlenker, Fixed points of compositions of earthquakes, Duke Math. J. 161 (2012), no. 6, 1011–1054. MR 2913100, DOI 10.1215/00127094-1548434
- Francesco Bonsante and Andrea Seppi, On Codazzi tensors on a hyperbolic surface and flat Lorentzian geometry, Int. Math. Res. Not. IMRN 2 (2016), 343–417. MR 3493421, DOI 10.1093/imrn/rnv144
- Francesco Bonsante and Andrea Seppi, Spacelike convex surfaces with prescribed curvature in $(2+1)$-Minkowski space, Adv. Math. 304 (2017), 434–493. MR 3558215, DOI 10.1016/j.aim.2016.09.005
- Francesco Bonsante and Andrea Seppi, Area-preserving diffeomorphisms of the hyperbolic plane and $K$-surfaces in anti-de Sitter space, J. Topol. 11 (2018), no. 2, 420–468. MR 3789829, DOI 10.1112/topo.12058
- Richard D. Canary, David Epstein, and Albert Marden (eds.), Fundamentals of hyperbolic geometry: selected expositions, London Mathematical Society Lecture Note Series, vol. 328, Cambridge University Press, Cambridge, 2006. MR 2230672, DOI 10.1017/CBO9781139106986
- Jeffrey Danciger, Geometric Transitions: From Hyperbolic to AdS Geometry, ProQuest LLC, Ann Arbor, MI, 2011. Thesis (Ph.D.)–Stanford University. MR 4172323
- Jeffrey Danciger, François Guéritaud, and Fanny Kassel, Geometry and topology of complete Lorentz spacetimes of constant curvature, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 1, 1–56 (English, with English and French summaries). MR 3465975, DOI 10.24033/asens.2275
- Farid Diaf and Andrea Seppi, The anti–de Sitter proof of Thurston’s earthquake theorem, In the tradition of Thurston III. Geometry and dynamics, Springer, Cham, [2024] ©2024, pp. 67–104. MR 4759042, DOI 10.1007/978-3-031-43502-7_{4}
- D. B. A. Epstein and A. Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 111, Cambridge Univ. Press, Cambridge, 1987, pp. 113–253. MR 903852
- Jinhua Fan and Jun Hu, Conformally natural extensions of vector fields and applications, Pure Appl. Math. Q. 18 (2022), no. 3, 1147–1186. MR 4461948, DOI 10.4310/PAMQ.2022.v18.n3.a10
- F. P. Gardiner, J. Hu, and N. Lakic, Earthquake curves, Complex manifolds and hyperbolic geometry (Guanajuato, 2001) Contemp. Math., vol. 311, Amer. Math. Soc., Providence, RI, 2002, pp. 141–195. MR 1940169, DOI 10.1090/conm/311/05452
- Frederick P. Gardiner, Infinitesimal bending and twisting in one-dimensional dynamics, Trans. Amer. Math. Soc. 347 (1995), no. 3, 915–937. MR 1290717, DOI 10.1090/S0002-9947-1995-1290717-4
- Frederick P. Gardiner and Nikola Lakic, Quasiconformal teichmuller theory, 1999.
- William M. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984), no. 2, 200–225. MR 762512, DOI 10.1016/0001-8708(84)90040-9
- Jun Hu, Norms on earthquake measures and Zygmund functions, Proc. Amer. Math. Soc. 133 (2005), no. 1, 193–202. MR 2085170, DOI 10.1090/S0002-9939-04-07545-8
- Steven P. Kerckhoff, Earthquakes are analytic, Comment. Math. Helv. 60 (1985), no. 1, 17–30. MR 787659, DOI 10.1007/BF02567397
- Steven P. Kerckhoff, Lines of minima in Teichmüller space, Duke Math. J. 65 (1992), no. 2, 187–213. MR 1150583, DOI 10.1215/S0012-7094-92-06507-0
- Maret Arnaud, A note on character varieties A note on character varieties, 2022.
- Geoffrey Mess, Lorentz spacetimes of constant curvature, Geom. Dedicata 126 (2007), 3–45. MR 2328921, DOI 10.1007/s10711-007-9155-7
- Hideki Miyachi and Dragomir Šarić, Uniform weak$^*$ topology and earthquakes in the hyperbolic plane, Proc. Lond. Math. Soc. (3) 105 (2012), no. 6, 1123–1148. MR 3004100, DOI 10.1112/plms/pds026
- Xin Nie and Andrea Seppi, Regular domains and surfaces of constant Gaussian curvature in 3-dimensional affine space, Anal. PDE 15 (2022), no. 3, 643–697. MR 4442837, DOI 10.2140/apde.2022.15.643
- Xin Nie and Andrea Seppi, Affine deformations of quasi-divisible convex cones, Proc. Lond. Math. Soc. (3) 127 (2023), no. 1, 35–83. MR 4611403, DOI 10.1112/plms.12537
- Mareike Pfeil, M2 thesis: Earthquakes in the hyperbolic plane, heidelberg university, 2017.
- Stefano Riolo and Andrea Seppi, Geometric transition from hyperbolic to anti–de Sitter structures in dimension four, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 23 (2022), no. 1, 115–176. MR 4407187
- R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, NJ, 1970. MR 274683, DOI 10.1515/9781400873173
- Dragomir Šarić, Real and complex earthquakes, Trans. Amer. Math. Soc. 358 (2006), no. 1, 233–249. MR 2171231, DOI 10.1090/S0002-9947-05-03651-2
- Andrea Seppi, Maximal surfaces in anti–de Sitter space, width of convex hulls and quasiconformal extensions of quasisymmetric homeomorphisms, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 6, 1855–1913. MR 3945744, DOI 10.4171/JEMS/875
- William P. Thurston, Earthquakes in two-dimensional hyperbolic geometry, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 112, Cambridge Univ. Press, Cambridge, 1986, pp. 91–112. MR 903860
- Scott Wolpert, On the symplectic geometry of deformations of a hyperbolic surface, Ann. of Math. (2) 117 (1983), no. 2, 207–234. MR 690844, DOI 10.2307/2007075
Bibliographic Information
- Farid Diaf
- Affiliation: Univ. Grenoble Alpes, CNRS, IF, 38000 Grenoble, France.
- ORCID: 0000-0001-6206-1376
- Email: farid.diaf@univ-grenoble-alpes.fr
- Received by editor(s): December 1, 2023
- Received by editor(s) in revised form: May 21, 2024
- Published electronically: September 17, 2024
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 8721-8767
- MSC (2020): Primary 53B30, 30F60
- DOI: https://doi.org/10.1090/tran/9243