The distribution of sandpile groups of random graphs with their pairings
HTML articles powered by AMS MathViewer
- by Eliot Hodges;
- Trans. Amer. Math. Soc. 377 (2024), 8769-8815
- DOI: https://doi.org/10.1090/tran/9244
- Published electronically: September 20, 2024
- HTML | PDF | Request permission
Abstract:
We determine the distribution of the sandpile group (also known as the Jacobian) of the Erdős–Rényi random graph $G(n,q)$ along with its canonical duality pairing as $n$ tends to infinity, fully resolving a conjecture due to Clancy, Leake, and Payne [Exp. Math. 24 (2015), pp. 1–7] and generalizing the result by Wood [J. Amer. Math. Soc. 30 (2017), pp. 915–958] on the groups. In particular, we show that a finite abelian $p$-group $G$ equipped with a perfect symmetric pairing $\delta$ appears as the Sylow $p$-part of the sandpile group and its pairing with frequency inversely proportional to $|G| |\operatorname {Aut}(G,\delta )|$, where $\operatorname {Aut}(G,\delta )$ is the set of automorphisms of $G$ preserving the pairing $\delta$. While this distribution is related to the Cohen–Lenstra distribution, the two distributions are not the same on account of the additional algebraic data of the pairing. The proof utilizes the moment method: we first compute a complete set of moments for our random variable (the average number of epimorphisms from our random object to a fixed object in the category of interest) and then show the moments determine the distribution. To obtain the moments, we prove a universality result for the moments of cokernels of random symmetric integral matrices whose dual groups are equipped with symmetric pairings that is strong enough to handle both the dependence in the diagonal entries and the additional data of the pairing. We then apply results due to Sawin and Wood [The moment problem for random objects in a category, preprint] to show that these moments determine a unique distribution.References
- Roland Bacher, Pierre de la Harpe, and Tatiana Nagnibeda, The lattice of integral flows and the lattice of integral cuts on a finite graph, Bull. Soc. Math. France 125 (1997), no. 2, 167–198 (English, with English and French summaries). MR 1478029, DOI 10.24033/bsmf.2303
- Z. D. Bai, Circular law, Ann. Probab. 25 (1997), no. 1, 494–529. MR 1428519, DOI 10.1214/aop/1024404298
- Zhidong Bai and Jack W. Silverstein, Spectral analysis of large dimensional random matrices, 2nd ed., Springer Series in Statistics, Springer, New York, 2010. MR 2567175, DOI 10.1007/978-1-4419-0661-8
- Per Bak, Chao Tang, and Kurt Wiesenfeld, Self-organized criticality, Phys. Rev. A (3) 38 (1988), no. 1, 364–374. MR 949160, DOI 10.1103/PhysRevA.38.364
- Matthew Baker and Serguei Norine, Riemann-Roch and Abel-Jacobi theory on a finite graph, Adv. Math. 215 (2007), no. 2, 766–788. MR 2355607, DOI 10.1016/j.aim.2007.04.012
- Matthew Baker and Serguei Norine, Harmonic morphisms and hyperelliptic graphs, Int. Math. Res. Not. IMRN 15 (2009), 2914–2955. MR 2525845, DOI 10.1093/imrn/rnp037
- Atal Bhargava, Jack DePascale, and Jake Koenig, The rank of the sandpile group of random directed bipartite graphs, Ann. Comb. 27 (2023), no. 4, 979–992. MR 4657338, DOI 10.1007/s00026-023-00637-3
- Manjul Bhargava, Daniel M. Kane, Hendrik W. Lenstra Jr., Bjorn Poonen, and Eric Rains, Modeling the distribution of ranks, Selmer groups, and Shafarevich-Tate groups of elliptic curves, Camb. J. Math. 3 (2015), no. 3, 275–321. MR 3393023, DOI 10.4310/CJM.2015.v3.n3.a1
- Norman Biggs, Algebraic graph theory, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993. MR 1271140
- Norman Biggs, Algebraic potential theory on graphs, Bull. London Math. Soc. 29 (1997), no. 6, 641–682. MR 1468054, DOI 10.1112/S0024609397003305
- N. L. Biggs, Chip-firing and the critical group of a graph, J. Algebraic Combin. 9 (1999), no. 1, 25–45. MR 1676732, DOI 10.1023/A:1018611014097
- Anders Björner, László Lovász, and Peter W. Shor, Chip-firing games on graphs, European J. Combin. 12 (1991), no. 4, 283–291. MR 1120415, DOI 10.1016/S0195-6698(13)80111-4
- Siegfried Bosch and Dino Lorenzini, Grothendieck’s pairing on component groups of Jacobians, Invent. Math. 148 (2002), no. 2, 353–396. MR 1906153, DOI 10.1007/s002220100195
- G. Cheong and M. Yu, The distribution of the cokernel of a polynomial evaluated at a random integral matrix, preprint.
- Julien Clancy, Nathan Kaplan, Timothy Leake, Sam Payne, and Melanie Matchett Wood, On a Cohen-Lenstra heuristic for Jacobians of random graphs, J. Algebraic Combin. 42 (2015), no. 3, 701–723. MR 3403177, DOI 10.1007/s10801-015-0598-x
- Julien Clancy, Timothy Leake, and Sam Payne, A note on Jacobians, Tutte polynomials, and two-variable zeta functions of graphs, Exp. Math. 24 (2015), no. 1, 1–7. MR 3305035, DOI 10.1080/10586458.2014.917443
- H. Cohen and H. W. Lenstra Jr., Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 33–62. MR 756082, DOI 10.1007/BFb0099440
- Scott Corry and David Perkinson, Divisors and sandpiles, American Mathematical Society, Providence, RI, 2018. An introduction to chip-firing. MR 3793659, DOI 10.1090/mbk/114
- Kevin P. Costello, Terence Tao, and Van Vu, Random symmetric matrices are almost surely nonsingular, Duke Math. J. 135 (2006), no. 2, 395–413. MR 2267289, DOI 10.1215/S0012-7094-06-13527-5
- John Dauns, Module types, Rocky Mountain J. Math. 27 (1997), no. 2, 503–557. MR 1466156, DOI 10.1216/rmjm/1181071924
- Christophe Delaunay, Heuristics on Tate-Shafarevitch groups of elliptic curves defined over $\Bbb Q$, Experiment. Math. 10 (2001), no. 2, 191–196. MR 1837670, DOI 10.1080/10586458.2001.10504442
- Deepak Dhar, Self-organized critical state of sandpile automaton models, Phys. Rev. Lett. 64 (1990), no. 14, 1613–1616. MR 1044086, DOI 10.1103/PhysRevLett.64.1613
- P. Erdős and A. Rényi, On the evolution of random graphs, Bull. Inst. Internat. Statist. 38 (1961), 343–347 (English, with French summary). MR 148055
- Eduardo Friedman and Lawrence C. Washington, On the distribution of divisor class groups of curves over a finite field, Théorie des nombres (Quebec, PQ, 1987) de Gruyter, Berlin, 1989, pp. 227–239. MR 1024565
- Andrei Gabrielov, Abelian avalanches and Tutte polynomials, Phys. A 195 (1993), no. 1-2, 253–274. MR 1215018, DOI 10.1016/0378-4371(93)90267-8
- Andrei Gabrielov, Avalanches, sandpiles and Tutte decomposition, The Gel′fand Mathematical Seminars, 1990–1992, Birkhäuser Boston, Boston, MA, 1993, pp. 19–26. MR 1247281
- V. L. Girko, The strong circular law. Twenty years later. II, Random Oper. Stochastic Equations 12 (2004), no. 3, 255–312. MR 2085255, DOI 10.1163/1569397042222477
- E. Gorokhovsky, Convergence of time-inhomogeneous random walks on finite groups with applications to universality for random groups, Bachelor’s thesis, California Institute of Technology, 2023.
- A. Grothendieck, Complements sur les biextensions. proprietes generales des biextensions des schemas en groupes, In Groupes de Monodromie en Géométrie Algébrique (Berlin, Heidelberg, 1972), Springer Berlin Heidelberg, pp. 218–312.
- A. Grothendieck and M. Raynaud, Modeles de Neron et monodromie, In Groupes de Monodromie en Géométrie Algébrique (Berlin, Heidelberg, 1972), Springer Berlin Heidelberg, pp. 313–523.
- Alexander E. Holroyd, Lionel Levine, Karola Mészáros, Yuval Peres, James Propp, and David B. Wilson, Chip-firing and rotor-routing on directed graphs, In and out of equilibrium. 2, Progr. Probab., vol. 60, Birkhäuser, Basel, 2008, pp. 331–364. MR 2477390, DOI 10.1007/978-3-7643-8786-0_{1}7
- Matthew D. Horton, H. M. Stark, and Audrey A. Terras, What are zeta functions of graphs and what are they good for?, Quantum graphs and their applications, Contemp. Math., vol. 415, Amer. Math. Soc., Providence, RI, 2006, pp. 173–189. MR 2277616, DOI 10.1090/conm/415/07868
- Shaked Koplewitz, Sandpile groups of random bipartite graphs, Ann. Comb. 27 (2023), no. 1, 1–18. MR 4557913, DOI 10.1007/s00026-022-00616-0
- Jungin Lee, Joint distribution of the cokernels of random $p$-adic matrices, Forum Math. 35 (2023), no. 4, 1005–1020. MR 4609840, DOI 10.1515/forum-2022-0209
- Jungin Lee, Universality of the cokernels of random $p$-adic Hermitian matrices, Trans. Amer. Math. Soc. 376 (2023), no. 12, 8699–8732. MR 4669308, DOI 10.1090/tran/9031
- Jungin Lee, Mixed moments and the joint distribution of random groups, J. Algebra 641 (2024), 49–84. MR 4672661, DOI 10.1016/j.jalgebra.2023.10.038
- Lionel Levine and James Propp, What is $\dots$ a sandpile?, Notices Amer. Math. Soc. 57 (2010), no. 8, 976–979. MR 2667495
- M. Lipnowski, W. Sawin, and J. Tsimerman, Cohen-Lenstra heuristics and bilinear pairings in the presence of roots of unity, preprint.
- Criel Merino López, Chip firing and the Tutte polynomial, Ann. Comb. 1 (1997), no. 3, 253–259. MR 1630779, DOI 10.1007/BF02558479
- Dino J. Lorenzini, Arithmetical graphs, Math. Ann. 285 (1989), no. 3, 481–501. MR 1019714, DOI 10.1007/BF01455069
- Dino Lorenzini, Arithmetical properties of Laplacians of graphs, Linear and Multilinear Algebra 47 (2000), no. 4, 281–306. MR 1784872, DOI 10.1080/03081080008818652
- Dino Lorenzini, Smith normal form and Laplacians, J. Combin. Theory Ser. B 98 (2008), no. 6, 1271–1300. MR 2462319, DOI 10.1016/j.jctb.2008.02.002
- M. L. Mehta, Random matrices and the statistical theory of energy levels, Academic Press, New York-London, 1967. MR 220494
- András Mészáros, The distribution of sandpile groups of random regular graphs, Trans. Amer. Math. Soc. 373 (2020), no. 9, 6529–6594. MR 4155185, DOI 10.1090/tran/8127
- Hoi H. Nguyen and Roger Van Peski, Universality for cokernels of random matrix products, Adv. Math. 438 (2024), Paper No. 109451, 70. MR 4676598, DOI 10.1016/j.aim.2023.109451
- Hoi H. Nguyen and Melanie Matchett Wood, Random integral matrices: universality of surjectivity and the cokernel, Invent. Math. 228 (2022), no. 1, 1–76. MR 4392456, DOI 10.1007/s00222-021-01082-w
- H. H. Nguyen and M. M. Wood, Local and global universality of random matrix cokernels, preprint.
- Serguei Norine and Peter Whalen, Jacobians of nearly complete and threshold graphs, European J. Combin. 32 (2011), no. 8, 1368–1376. MR 2838022, DOI 10.1016/j.ejc.2011.04.003
- Guangming Pan and Wang Zhou, Circular law, extreme singular values and potential theory, J. Multivariate Anal. 101 (2010), no. 3, 645–656. MR 2575411, DOI 10.1016/j.jmva.2009.08.005
- W. Sawin and M. M. Wood, The moment problem for random objects in a category, preprint.
- Farbod Shokrieh, The monodromy pairing and discrete logarithm on the Jacobian of finite graphs, J. Math. Cryptol. 4 (2010), no. 1, 43–56. MR 2660333, DOI 10.1515/JMC.2010.002
- Terence Tao and Van Vu, On random $\pm 1$ matrices: singularity and determinant, Random Structures Algorithms 28 (2006), no. 1, 1–23. MR 2187480, DOI 10.1002/rsa.20109
- Terence Tao and Van Vu, On the singularity probability of random Bernoulli matrices, J. Amer. Math. Soc. 20 (2007), no. 3, 603–628. MR 2291914, DOI 10.1090/S0894-0347-07-00555-3
- Melanie Matchett Wood, The distribution of sandpile groups of random graphs, J. Amer. Math. Soc. 30 (2017), no. 4, 915–958. MR 3671933, DOI 10.1090/jams/866
- Melanie Matchett Wood, Random integral matrices and the Cohen-Lenstra heuristics, Amer. J. Math. 141 (2019), no. 2, 383–398. MR 3928040, DOI 10.1353/ajm.2019.0008
- Melanie Matchett Wood, Probability theory for random groups arising in number theory, ICM—International Congress of Mathematicians. Vol. 6. Sections 12–14, EMS Press, Berlin, [2023] ©2023, pp. 4476–4508. MR 4680411
- E. Yan, Universality for cokernels of Dedekind domain valued random matrices, preprint.
Bibliographic Information
- Eliot Hodges
- Affiliation: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138
- ORCID: 0000-0001-5661-9329
- Email: eliothodges@college.harvard.edu
- Received by editor(s): December 7, 2023
- Received by editor(s) in revised form: May 12, 2024, and May 25, 2024
- Published electronically: September 20, 2024
- Additional Notes: This research was conducted at Harvard University and the Duluth Summer Mathematics Research Program for Undergraduates at the University of Minnesota Duluth with support from Jane Street Capital, the National Security Agency, the National Science Foundation (grants 2140043 and 2052036), Harvard University, and the Harvard College Research Program.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 377 (2024), 8769-8815
- MSC (2020): Primary 05C80, 15B52, 60B20
- DOI: https://doi.org/10.1090/tran/9244