Logarithmic Pandharipande–Thomas spaces and the secondary polytope
HTML articles powered by AMS MathViewer
- by Patrick Kennedy–Hunt;
- Trans. Amer. Math. Soc. 378 (2025), 1-44
- DOI: https://doi.org/10.1090/tran/9026
- Published electronically: October 31, 2024
- HTML | PDF | Request permission
Abstract:
Maulik and Ranganathan have recently introduced moduli spaces of logarithmic stable pairs. In the case of toric surfaces we recast this theory using three ingredients: Gelfand, Kapranov and Zelevinsky secondary polytopes, Hilbert schemes of points, and tautological vector bundles. In particular, logarithmic stable pairs spaces are expressed as the zero set of an explicit section of a vector bundle on a logarithmically smooth space, thus providing an explicit description of their virtual fundamental class. A key feature of our construction is that moduli spaces are completely canonical, unlike the existing construction, which is only well-defined up to logarithmic modifications. We calculate the Euler–Satake characteristics of our moduli spaces in a number of basic examples. These computations indicate the complexity of the spaces we construct.References
- Dan Abramovich and Qile Chen, Stable logarithmic maps to Deligne-Faltings pairs II, Asian J. Math. 18 (2014), no. 3, 465–488. MR 3257836, DOI 10.4310/AJM.2014.v18.n3.a5
- Kenneth Ascher and Samouil Molcho, Logarithmic stable toric varieties and their moduli, Algebr. Geom. 3 (2016), no. 3, 296–319. MR 3504534, DOI 10.14231/AG-2016-014
- A. Białynicki-Birula, On fixed point schemes of actions of multiplicative and additive groups, Topology 12 (1973), 99–103. MR 313261, DOI 10.1016/0040-9383(73)90024-4
- Pierrick Bousseau, Tropical refined curve counting from higher genera and lambda classes, Invent. Math. 215 (2019), no. 1, 1–79. MR 3904449, DOI 10.1007/s00222-018-0823-z
- Renzo Cavalieri, Melody Chan, Martin Ulirsch, and Jonathan Wise, A moduli stack of tropical curves, Forum Math. Sigma 8 (2020), Paper No. e23, 93. MR 4091085, DOI 10.1017/fms.2020.16
- Qile Chen, Stable logarithmic maps to Deligne-Faltings pairs I, Ann. of Math. (2) 180 (2014), no. 2, 455–521. MR 3224717, DOI 10.4007/annals.2014.180.2.2
- William Fulton and Bernd Sturmfels, Intersection theory on toric varieties, Topology 36 (1997), no. 2, 335–353. MR 1415592, DOI 10.1016/0040-9383(96)00016-X
- William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323, DOI 10.1007/978-1-4612-1700-8
- William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037, DOI 10.1515/9781400882526
- Israel Gelfand, Mikhail Kapranov, and Andrei Zelevinksi, Discriminants, resultants, and multidimensional determinants, Modern Birkhauser Classics, 1994.
- Mark Gross and Bernd Siebert, An invitation to toric degenerations, Surveys in differential geometry. Volume XVI. Geometry of special holonomy and related topics, Surv. Differ. Geom., vol. 16, Int. Press, Somerville, MA, 2011, pp. 43–78. MR 2893676, DOI 10.4310/SDG.2011.v16.n1.a2
- Mark Gross and Bernd Siebert, Logarithmic Gromov-Witten invariants, J. Amer. Math. Soc. 26 (2013), no. 2, 451–510. MR 3011419, DOI 10.1090/S0894-0347-2012-00757-7
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- Eric Katz, Tropical invariants from the secondary fan, 2006.
- Patrick Kennedy-Hunt, The logarithmic quot scheme and its tropicalisation, 2023, In preparation.
- Martijn Kool, Vivek Shende, and Richard P. Thomas, A short proof of the Göttsche conjecture, Geom. Topol. 15 (2011), no. 1, 397–406. MR 2776848, DOI 10.2140/gt.2011.15.397
- M. M. Kapranov, B. Sturmfels, and A. V. Zelevinsky, Quotients of toric varieties, Math. Ann. 290 (1991), no. 4, 643–655. MR 1119943, DOI 10.1007/BF01459264
- M. M. Kapranov, B. Sturmfels, and A. V. Zelevinsky, Chow polytopes and general resultants, Duke Math. J. 67 (1992), no. 1, 189–218. MR 1174606, DOI 10.1215/S0012-7094-92-06707-X
- Martijn Kool and Richard Thomas, Reduced classes and curve counting on surfaces I: theory, Algebr. Geom. 1 (2014), no. 3, 334–383. MR 3238154, DOI 10.14231/AG-2014-017
- Martijn Kool and Richard Thomas, Reduced classes and curve counting on surfaces II: calculations, Algebr. Geom. 1 (2014), no. 3, 384–399. MR 3238155, DOI 10.14231/AG-2014-018
- Grigory Mikhalkin, Enumerative tropical algebraic geometry in $\Bbb R^2$, J. Amer. Math. Soc. 18 (2005), no. 2, 313–377. MR 2137980, DOI 10.1090/S0894-0347-05-00477-7
- D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math. 142 (2006), no. 5, 1263–1285. MR 2264664, DOI 10.1112/S0010437X06002302
- D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. II, Compos. Math. 142 (2006), no. 5, 1286–1304. MR 2264665, DOI 10.1112/S0010437X06002314
- Samouil Molcho, Universal weak semistable reduction, 2019.
- Travis Mandel and Helge Ruddat, Descendant log Gromov-Witten invariants for toric varieties and tropical curves, Trans. Amer. Math. Soc. 373 (2020), no. 2, 1109–1152. MR 4068259, DOI 10.1090/tran/7936
- Davesh Maulik and Dhruv Ranganathan, Logarithmic Donaldson-Thomas theory, Forum Math. Pi 12 (2024), Paper No. e9, 63. MR 4733771, DOI 10.1017/fmp.2024.1
- Davesh Maulik and Dhruv Ranganathan, Logarithmic enumerative geometry for curves and sheaves, arXiv, 2023.
- Diane Maclagan and Bernd Sturmfels, Introduction to tropical geometry, Graduate Studies in Mathematics, vol. 161, American Mathematical Society, Providence, RI, 2015. MR 3287221, DOI 10.1090/gsm/161
- David Mumford, An analytic construction of degenerating abelian varieties over complete rings, Compositio Math. 24 (1972), 239–272. MR 352106
- Takeo Nishinou and Bernd Siebert, Toric degenerations of toric varieties and tropical curves, Duke Math. J. 135 (2006), no. 1, 1–51. MR 2259922, DOI 10.1215/S0012-7094-06-13511-1
- Martin C. Olsson, Compactifying moduli spaces for abelian varieties, Lecture Notes in Mathematics, vol. 1958, Springer-Verlag, Berlin, 2008. MR 2446415, DOI 10.1007/978-3-540-70519-2
- R. Pandharipande and R. P. Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009), no. 2, 407–447. MR 2545686, DOI 10.1007/s00222-009-0203-9
- R. Pandharipande and R. P. Thomas, Stable pairs and BPS invariants, J. Amer. Math. Soc. 23 (2010), no. 1, 267–297. MR 2552254, DOI 10.1090/S0894-0347-09-00646-8
- Dhruv Ranganathan, Logarithmic Gromov-Witten theory with expansions, Algebr. Geom. 9 (2022), no. 6, 714–761. MR 4518245, DOI 10.14231/AG-2022-022
- Ichirô Satake, The Gauss-Bonnet theorem for $V$-manifolds, J. Math. Soc. Japan 9 (1957), 464–492. MR 95520, DOI 10.2969/jmsj/00940464
- William P. Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series, vol. 35, Princeton University Press, Princeton, NJ, 1997. Edited by Silvio Levy. MR 1435975, DOI 10.1515/9781400865321
- Angelo Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989), no. 3, 613–670. MR 1005008, DOI 10.1007/BF01388892
Bibliographic Information
- Patrick Kennedy–Hunt
- Affiliation: Centre for Mathematical Sciences, University of Cambridge, United Kingdom
- Received by editor(s): June 1, 2022
- Received by editor(s) in revised form: February 16, 2023, and May 18, 2023
- Published electronically: October 31, 2024
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 1-44
- MSC (2020): Primary 14N35
- DOI: https://doi.org/10.1090/tran/9026
- MathSciNet review: 4840298