Smoothness of components of the Emerton-Gee stack for $\operatorname {GL}_2$
HTML articles powered by AMS MathViewer
- by Anthony Guzman, Kalyani Kansal, Iason Kountouridis, Ben Savoie and Xiyuan Wang;
- Trans. Amer. Math. Soc. 378 (2025), 67-115
- DOI: https://doi.org/10.1090/tran/9088
- Published electronically: October 23, 2024
- HTML | PDF | Request permission
Abstract:
Let $K$ be a finite unramified extension of $\mathbb {Q}_p$, where $p>2$. The works of Caraiani, Emerton, Gee and Savitt have constructed a moduli stack of two dimensional mod $p$ representations of the absolute Galois group of $K$. We show that most irreducible components of this stack (including several non-generic components) are isomorphic to quotients of smooth affine schemes. We also use this quotient presentation to compute global sections on these components.References
- Thomas Barnet-Lamb, Toby Gee, and David Geraghty, Serre weights for rank two unitary groups, Math. Ann. 356 (2013), no. 4, 1551–1598. MR 3072811, DOI 10.1007/s00208-012-0893-y
- R. Bellovin, N. Borade, A. Hilado, K. Kansal, H. Lee, B. Levin, D. Savitt, and H. Wiersema, Irregular loci in the Emerton-Gee stack for $GL_2$, Preprint.
- Ana Caraiani, Matthew Emerton, Toby Gee, and David Savitt, Components of moduli stacks of two-dimensional Galois representations, Preprint, arXiv:2207.05237, 2022.
- Ana Caraiani, Matthew Emerton, Toby Gee, and David Savitt, Local geometry of moduli stacks of two-dimensional Galois representations, Preprint, arXiv:2207.14337, 2022.
- Xavier Caruso, Agnès David, and Ariane Mézard, Un calcul d’anneaux de déformations potentiellement Barsotti-Tate, Trans. Amer. Math. Soc. 370 (2018), no. 9, 6041–6096 (French, with English and French summaries). MR 3814324, DOI 10.1090/tran/6973
- Matthew Emerton and Toby Gee, ‘Scheme-theoretic images’ of morphisms of stacks, Algebr. Geom. 8 (2021), no. 1, 1–132. MR 4174286, DOI 10.14231/ag-2021-001
- Matthew Emerton, Toby Gee, and Eugen Hellmann, An introduction to the categorical $p$-adic Langlands program, Preprint, arXiv:2210.01404, 2022.
- Jean-Marc Fontaine, Représentations $p$-adiques des corps locaux. I, The Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, pp. 249–309 (French). MR 1106901
- Mark Kisin, Crystalline representations and $F$-crystals, Algebraic geometry and number theory, Progr. Math., vol. 253, Birkhäuser Boston, Boston, MA, 2006, pp. 459–496. MR 2263197, DOI 10.1007/978-0-8176-4532-8_{7}
- The Stacks project authors, The Stacks project, 2018, http://stacks.math.columbia.edu.
Bibliographic Information
- Anthony Guzman
- Affiliation: Department of Mathematics, The University of Arizona, Tucson, Arizona 85721
- ORCID: 0009-0007-5413-6164
- Email: awguzman@math.arizona.edu
- Kalyani Kansal
- Affiliation: Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218
- Address at time of publication: Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom; kalyani.kansal@gmail.com
- Email: kkansal2@jhu.edu
- Iason Kountouridis
- Affiliation: Department of Mathematics, The University of Chicago, Chicago, Illinois 60637
- Address at time of publication: Laboratoire de Mathematiques d’Orsay, Université Paris-Saclay, F-91405 Orsay Cedex
- ORCID: 0009-0008-9783-1586
- Email: iasonk@math.uchicago.edu, iasonkount@gmail.com
- Ben Savoie
- Affiliation: Department of Mathematics, Rice University, Houston, Texas 77005
- Email: Bs83@rice.edu
- Xiyuan Wang
- Affiliation: Department of Mathematics, The Ohio State University, Columbus, Ohio 43210
- MR Author ID: 1520564
- ORCID: 0009-0006-0245-071X
- Email: wang.15476@osu.edu
- Received by editor(s): December 16, 2022
- Received by editor(s) in revised form: July 5, 2023, and October 18, 2023
- Published electronically: October 23, 2024
- Additional Notes: This work was born out of the NSF-FRG Collaborative Grant DMS-1952556.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 67-115
- MSC (2020): Primary 11F80
- DOI: https://doi.org/10.1090/tran/9088
- MathSciNet review: 4840300