Quivers and curves in higher dimension
HTML articles powered by AMS MathViewer
- by Hülya Argüz and Pierrick Bousseau;
- Trans. Amer. Math. Soc. 378 (2025), 389-420
- DOI: https://doi.org/10.1090/tran/9232
- Published electronically: September 3, 2024
- HTML | PDF | Request permission
Abstract:
We prove a correspondence between Donaldson–Thomas invariants of quivers with potential having trivial attractor invariants and genus zero punctured Gromov–Witten invariants of holomorphic symplectic cluster varieties. The proof relies on the comparison of the stability scattering diagram, describing the wall-crossing behavior of Donaldson–Thomas invariants, with a scattering diagram capturing punctured Gromov–Witten invariants via tropical geometry.References
- Dan Abramovich and Qile Chen, Stable logarithmic maps to Deligne-Faltings pairs II, Asian J. Math. 18 (2014), no. 3, 465–488. MR 3257836, DOI 10.4310/AJM.2014.v18.n3.a5
- Dan Abramovich, Qile Chen, Mark Gross, and Bernd Siebert, Decomposition of degenerate Gromov-Witten invariants, Compos. Math. 156 (2020), no. 10, 2020–2075. MR 4177284, DOI 10.1112/s0010437x20007393
- Dan Abramovich, Qile Chen, Mark Gross, and Bernd Siebert, Punctured logarithmic maps, Preprint, arXiv:2009.07720, 2020.
- Sergei Alexandrov and Boris Pioline, Attractor flow trees, BPS indices and quivers, Adv. Theor. Math. Phys. 23 (2019), no. 3, 627–699. MR 4049073, DOI 10.4310/ATMP.2019.v23.n3.a2
- Murad Alim, Sergio Cecotti, Clay Córdova, Sam Espahbodi, Ashwin Rastogi, and Cumrun Vafa, $\scr {N}=2$ quantum field theories and their BPS quivers, Adv. Theor. Math. Phys. 18 (2014), no. 1, 27–127. MR 3268234, DOI 10.4310/atmp.2014.v18.n1.a2
- Hülya Argüz and Pierrick Bousseau, The flow tree formula for Donaldson-Thomas invariants of quivers with potentials, Compos. Math. 158 (2022), no. 12, 2206–2249. MR 4524360, DOI 10.1112/s0010437x22007801
- Hülya Argüz and Pierrick Bousseau, Fock-Goncharov dual cluster varieties and Gross-Siebert mirrors, J. Reine Angew. Math. 802 (2023), 125–171. MR 4635344, DOI 10.1515/crelle-2023-0043
- Hülya Argüz and Pierrick Bousseau, Quivers, flow trees, and log curves, Preprint, arXiv:2302.02068, 2023.
- Hülya Argüz and Mark Gross, The higher-dimensional tropical vertex, Geom. Topol. 26 (2022), no. 5, 2135–2235. MR 4520304, DOI 10.2140/gt.2022.26.2135
- Paul S. Aspinwall, Tom Bridgeland, Alastair Craw, Michael R. Douglas, Mark Gross, Anton Kapustin, Gregory W. Moore, Graeme Segal, Balázs Szendrői, and P. M. H. Wilson, Dirichlet branes and mirror symmetry, Clay Mathematics Monographs, vol. 4, American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2009. MR 2567952
- Denis Auroux, Mirror symmetry and $T$-duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. GGT 1 (2007), 51–91. MR 2386535
- Guillaume Beaujard, Jan Manschot, and Boris Pioline, Vafa-Witten invariants from exceptional collections, Comm. Math. Phys. 385 (2021), no. 1, 101–226. MR 4275783, DOI 10.1007/s00220-021-04074-2
- Pierrick Bousseau, The quantum tropical vertex, Geom. Topol. 24 (2020), no. 3, 1297–1379. MR 4157555, DOI 10.2140/gt.2020.24.1297
- Pierrick Bousseau, On an example of quiver DT/relative GW correspondence, Int. Math. Res. Not. IMRN 15 (2021), 11845–11888.
- Pierrick Bousseau, Scattering diagrams, stability conditions, and coherent sheaves on $\Bbb P^2$, J. Algebraic Geom. 31 (2022), no. 4, 593–686. MR 4484550, DOI 10.1090/jag/795
- Pierrick Bousseau, A proof of N. Takahashi’s conjecture for $(\Bbb P^2,E)$ and a refined sheaves/Gromov-Witten correspondence, Duke Math. J. 172 (2023), no. 15, 2895–2955. MR 4675044, DOI 10.1215/00127094-2022-0095
- Pierrick Bousseau, Strong positivity for the skein algebras of the 4-punctured sphere and of the 1-punctured torus, Comm. Math. Phys. 398 (2023), no. 1, 1–58. MR 4544181, DOI 10.1007/s00220-022-04512-9
- Pierrick Bousseau, Holomorphic Floer theory and Donaldson-Thomas invariants, String-Math 2022, Proc. Sympos. Pure Math., vol. 107, Amer. Math. Soc., Providence, RI, [2024] ©2024, pp. 45–78. MR 4729624
- Pierrick Bousseau, Pierre Descombes, Bruno Le Floch, and Boris Pioline, BPS dendroscopy on local $\Bbb P^2$, Comm. Math. Phys. 405 (2024), no. 4, Paper No. 108, 98. MR 4733340, DOI 10.1007/s00220-024-04938-3
- Tom Bridgeland, Stability conditions on triangulated categories, Ann. of Math. (2) 166 (2007), no. 2, 317–345. MR 2373143, DOI 10.4007/annals.2007.166.317
- Tom Bridgeland, Scattering diagrams, Hall algebras and stability conditions, Algebr. Geom. 4 (2017), no. 5, 523–561. MR 3710055, DOI 10.14231/2017-027
- Eric Bucher and Milen Yakimov, Recovering the topology of surfaces from cluster algebras, Math. Z. 288 (2018), no. 1-2, 565–594. MR 3774426, DOI 10.1007/s00209-017-1901-4
- Sergio Cecotti and Michele Del Zotto, The BPS spectrum of the 4d N= 2 SCFT’s $H_1$, $H_2$, $D_4$, $E_6$, $E_7$, $E_8$, J. High Energy Phy. 2013 (2013), no. 6, 1–13.
- Qiyue Chen, Travis Mandel, and Fan Qin, Stability scattering diagrams and quiver coverings, Preprint, arXiv:2306.04104, 2023.
- Man-Wai Cheung and Travis Mandel, Donaldson-Thomas invariants from tropical disks, Selecta Math. (N.S.) 26 (2020), no. 4, Paper No. 57, 46. MR 4131036, DOI 10.1007/s00029-020-00580-8
- David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322, DOI 10.1090/gsm/124
- Ben Davison and Travis Mandel, Strong positivity for quantum theta bases of quantum cluster algebras, Invent. Math. 226 (2021), no. 3, 725–843. MR 4337972, DOI 10.1007/s00222-021-01061-1
- Ben Davison and Sven Meinhardt, Donaldson-Thomas theory for categories of homological dimension one with potential, arXiv preprint arXiv:1512.08898 (2015).
- Ben Davison and Sven Meinhardt, Cohomological Donaldson-Thomas theory of a quiver with potential and quantum enveloping algebras, Invent. Math. 221 (2020), no. 3, 777–871. MR 4132957, DOI 10.1007/s00222-020-00961-y
- Frederik Denef and Gregory W. Moore, Split states, entropy enigmas, holes and halos, J. High Energy Phys. 11 (2011), 129, i, 152. MR 2913216, DOI 10.1007/JHEP11(2011)129
- Harm Derksen, Jerzy Weyman, and Andrei Zelevinsky, Quivers with potentials and their representations. I. Mutations, Selecta Math. (N.S.) 14 (2008), no. 1, 59–119. MR 2480710, DOI 10.1007/s00029-008-0057-9
- Pierre Descombes, Cohomological DT invariants from localization, J. Lond. Math. Soc. (2) 106 (2022), no. 4, 2959–3007. MR 4524190, DOI 10.1112/jlms.12653
- S. K. Donaldson and R. P. Thomas, Gauge theory in higher dimensions, The geometric universe (Oxford, 1996) Oxford Univ. Press, Oxford, 1998, pp. 31–47. MR 1634503
- J.-M. Drezet and J. Le Potier, Fibrés stables et fibrés exceptionnels sur $\textbf {P}_2$, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 193–243 (French, with English summary). MR 816365, DOI 10.24033/asens.1489
- Tobias Ekholm, Piotr Kucharski, and Pietro Longhi, Physics and geometry of knots-quivers correspondence, Comm. Math. Phys. 379 (2020), no. 2, 361–415. MR 4156213, DOI 10.1007/s00220-020-03840-y
- Vladimir Fock and Alexander Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1–211. MR 2233852, DOI 10.1007/s10240-006-0039-4
- Davide Gaiotto, Gregory W. Moore, and Andrew Neitzke, Wall-crossing, Hitchin systems, and the WKB approximation, Adv. Math. 234 (2013), 239–403. MR 3003931, DOI 10.1016/j.aim.2012.09.027
- Victor Ginzburg, Calabi-Yau algebras, Preprint, arXiv:0612139, 2006.
- Mark Gross, Paul Hacking, and Sean Keel, Birational geometry of cluster algebras, Algebr. Geom. 2 (2015), no. 2, 137–175. MR 3350154, DOI 10.14231/AG-2015-007
- Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich, Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018), no. 2, 497–608. MR 3758151, DOI 10.1090/jams/890
- Mark Gross, Paul Hacking, Sean Keel, and Bernd Siebert, The mirror of the cubic surface, Recent developments in algebraic geometry—to Miles Reid for his 70th birthday, London Math. Soc. Lecture Note Ser., vol. 478, Cambridge Univ. Press, Cambridge, 2022, pp. 150–182. MR 4480568
- Mark Gross and Rahul Pandharipande, Quivers, curves, and the tropical vertex, Port. Math. 67 (2010), no. 2, 211–259. MR 2662867, DOI 10.4171/PM/1865
- Mark Gross, Rahul Pandharipande, and Bernd Siebert, The tropical vertex, Duke Math. J. 153 (2010), no. 2, 297–362. MR 2667135, DOI 10.1215/00127094-2010-025
- Mark Gross and Bernd Siebert, From real affine geometry to complex geometry, Ann. of Math. (2) 174 (2011), no. 3, 1301–1428. MR 2846484, DOI 10.4007/annals.2011.174.3.1
- Mark Gross and Bernd Siebert, Logarithmic Gromov-Witten invariants, J. Amer. Math. Soc. 26 (2013), no. 2, 451–510. MR 3011419, DOI 10.1090/S0894-0347-2012-00757-7
- Mark Gross and Bernd Siebert, The canonical wall structure and intrinsic mirror symmetry, Invent. Math. (2022), 1–102.
- Dominic Joyce, On counting special Lagrangian homology 3-spheres, Topology and geometry: commemorating SISTAG, Contemp. Math., vol. 314, Amer. Math. Soc., Providence, RI, 2002, pp. 125–151. MR 1941627, DOI 10.1090/conm/314/05427
- Dominic Joyce and Yinan Song, A theory of generalized Donaldson-Thomas invariants, Mem. Amer. Math. Soc. 217 (2012), no. 1020, iv+199. MR 2951762, DOI 10.1090/S0065-9266-2011-00630-1
- Bernhard Keller, Calabi-Yau triangulated categories, Trends in representation theory of algebras and related topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 467–489. MR 2484733, DOI 10.4171/062-1/11
- A. D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 515–530. MR 1315461, DOI 10.1093/qmath/45.4.515
- Maxim Kontsevich and Yan Soibelman, Affine structures and non-Archimedean analytic spaces, The unity of mathematics, Progr. Math., vol. 244, Birkhäuser Boston, Boston, MA, 2006, pp. 321–385. MR 2181810, DOI 10.1007/0-8176-4467-9_{9}
- Maxim Kontsevich and Yan Soibelman, Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and mirror symmetry, Homological mirror symmetry and tropical geometry, Lect. Notes Unione Mat. Ital., vol. 15, Springer, Cham, 2014, pp. 197–308. MR 3330788, DOI 10.1007/978-3-319-06514-4_{6}
- Daniel Labardini-Fragoso, Quivers with potentials associated to triangulated surfaces, Proc. Lond. Math. Soc. (3) 98 (2009), no. 3, 797–839. MR 2500873, DOI 10.1112/plms/pdn051
- Seung-Joo Lee, Zhao-Long Wang, and Piljin Yi, Quiver invariants from intrinsic Higgs states, J. High Energy Phys. 7 (2012), 169, front matter+18. MR 2967676, DOI 10.1007/JHEP07(2012)169
- Wenxuan Lu, Instanton Correction, Wall Crossing And Mirror Symmetry Of Hitchin’s Moduli Spaces, ProQuest LLC, Ann Arbor, MI, 2011. Thesis (Ph.D.)–Massachusetts Institute of Technology. MR 2982375
- D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math. 142 (2006), no. 5, 1263–1285. MR 2264664, DOI 10.1112/S0010437X06002302
- Sven Meinhardt and Markus Reineke, Donaldson-Thomas invariants versus intersection cohomology of quiver moduli, J. Reine Angew. Math. 754 (2019), 143–178. MR 4000572, DOI 10.1515/crelle-2017-0010
- Matthew R. Mills, Maximal green sequences for quivers of finite mutation type, Adv. Math. 319 (2017), 182–210. MR 3695872, DOI 10.1016/j.aim.2017.08.019
- Lang Mou, Scattering diagrams for generalized cluster algebras, Preprint, arXiv:2110.02416, 2021.
- Sergey Mozgovoy, Crepant resolutions and brane tilings I: toric realization, Preprint, arXiv:0908.3475, 2009.
- Sergey Mozgovoy, Operadic approach to wall-crossing, J. Algebra 596 (2022), 53–88. MR 4366305, DOI 10.1016/j.jalgebra.2021.12.032
- Sergey Mozgovoy and Boris Pioline, Attractor invariants, brane tilings and crystals, Preprint, arXiv:2012.14358, 2020.
- Markus Reineke, Poisson automorphisms and quiver moduli, J. Inst. Math. Jussieu 9 (2010), no. 3, 653–667. MR 2650811, DOI 10.1017/S1474748009000176
- Markus Reineke, Cohomology of quiver moduli, functional equations, and integrality of Donaldson-Thomas type invariants, Compos. Math. 147 (2011), no. 3, 943–964. MR 2801406, DOI 10.1112/S0010437X1000521X
- Markus Reineke, Jacopo Stoppa, and Thorsten Weist, MPS degeneration formula for quiver moduli and refined GW/Kronecker correspondence, Geom. Topol. 16 (2012), no. 4, 2097–2134. MR 3033514, DOI 10.2140/gt.2012.16.2097
- Markus Reineke and Thorsten Weist, Refined GW/Kronecker correspondence, Math. Ann. 355 (2013), no. 1, 17–56. MR 3004575, DOI 10.1007/s00208-012-0778-0
- Markus Reineke and Thorsten Weist, Moduli spaces of point configurations and plane curve counts, Int. Math. Res. Not. IMRN 13 (2021), 10339–10372. MR 4283580, DOI 10.1093/imrn/rnz118
- Linhui Shen and Daping Weng, Cluster structures on double Bott-Samelson cells, Forum Math. Sigma 9 (2021), Paper No. e66, 89. MR 4321011, DOI 10.1017/fms.2021.59
- R. P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on $K3$ fibrations, J. Differential Geom. 54 (2000), no. 2, 367–438. MR 1818182, DOI 10.4310/jdg/1214341649
- R. P. Thomas and S.-T. Yau, Special Lagrangians, stable bundles and mean curvature flow, Comm. Anal. Geom. 10 (2002), no. 5, 1075–1113. MR 1957663, DOI 10.4310/CAG.2002.v10.n5.a8
- Daping Weng, Donaldson-Thomas transformation of double Bruhat cells in semisimple Lie groups, Ann. Sci. Éc. Norm. Supér. (4) 53 (2020), no. 2, 353–436 (English, with English and French summaries). MR 4094561, DOI 10.24033/asens.2424
Bibliographic Information
- Hülya Argüz
- Affiliation: University of Georgia, Department of Mathematics, Athens, Georgia 30605
- Email: Hulya.Arguz@uga.edu
- Pierrick Bousseau
- Affiliation: University of Georgia, Department of Mathematics, Athens, Georgia 30605
- MR Author ID: 1306428
- ORCID: 0000-0002-1303-7019
- Email: Pierrick.Bousseau@uga.edu
- Received by editor(s): September 1, 2023
- Received by editor(s) in revised form: March 21, 2024, and May 27, 2024
- Published electronically: September 3, 2024
- Additional Notes: The research of the first author was partially supported by the NSF grant DMS-2302116. The research of the second author was partially supported by the NSF grant DMS-2302117.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 389-420
- MSC (2020): Primary 14N35
- DOI: https://doi.org/10.1090/tran/9232
- MathSciNet review: 4840309