Non-periodic not everywhere dense trajectories in triangular billiards
HTML articles powered by AMS MathViewer
- by Julia Slipantschuk, Oscar F. Bandtlow and Wolfram Just;
- Trans. Amer. Math. Soc. 378 (2025), 375-388
- DOI: https://doi.org/10.1090/tran/9239
- Published electronically: October 25, 2024
- HTML | PDF | Request permission
Abstract:
Building on tools that have been successfully used in the study of rational billiards, such as induced maps and interval exchange transformations, we provide a construction of a one-parameter family of isosceles triangles exhibiting non-periodic trajectories that are not everywhere dense. This provides, by elementary means, a definitive negative answer to a long-standing open question on the density of non-periodic trajectories in triangular billiards.References
- Roberto Artuso, Giulio Casati, and Italo Guarneri, Numerical study on ergodic properties of triangular billiards, Phys. Rev. E (3) 55 (1997), no. 6, 6384–6390. MR 1453801, DOI 10.1103/PhysRevE.55.6384
- Jozef Bobok and Serge Troubetzkoy, Does a billiard orbit determine its (polygonal) table?, Fund. Math. 212 (2011), no. 2, 129–144. MR 2784003, DOI 10.4064/fm212-2-2
- Edward B. Burger and Robert Tubbs, Making transcendence transparent, Springer-Verlag, New York, 2004. An intuitive approach to classical transcendental number theory. MR 2077395, DOI 10.1007/978-1-4757-4114-8
- G. Casati and T. Prosen, Mixing property of triangular billiards, Phys. Rev. Lett. 83 (1999), 4729. DOI 10.1103/PhysRevLett.83.4729.
- Nikolai Chernov and Roberto Markarian, Chaotic billiards, Mathematical Surveys and Monographs, vol. 127, American Mathematical Society, Providence, RI, 2006. MR 2229799, DOI 10.1090/surv/127
- Diana Davis, Kelsey DiPietro, Jenny Rustad, and Alexander St. Laurent, Negative refraction and tiling billiards, Adv. Geom. 18 (2018), no. 2, 133–159. MR 3785417, DOI 10.1515/advgeom-2017-0053
- G. A. Gal′perin, Nonperiodic and not everywhere dense billiard trajectories in convex polygons and polyhedrons, Comm. Math. Phys. 91 (1983), no. 2, 187–211. MR 723547, DOI 10.1007/BF01211158
- E. Gutkin, Billiards on almost integrable polyhedral surfaces, Ergodic Theory Dynam. Systems 4 (1984), no. 4, 569–584. MR 779714, DOI 10.1017/S0143385700002650
- Eugene Gutkin, Billiards in polygons: survey of recent results, J. Statist. Phys. 83 (1996), no. 1-2, 7–26. MR 1382759, DOI 10.1007/BF02183637
- Eugene Gutkin, Billiard dynamics: an updated survey with the emphasis on open problems, Chaos 22 (2012), no. 2, 026116, 13. MR 3388585, DOI 10.1063/1.4729307
- Richard Kenyon and John Smillie, Billiards on rational-angled triangles, Comment. Math. Helv. 75 (2000), no. 1, 65–108. MR 1760496, DOI 10.1007/s000140050113
- Steven Kerckhoff, Howard Masur, and John Smillie, Ergodicity of billiard flows and quadratic differentials, Ann. of Math. (2) 124 (1986), no. 2, 293–311. MR 855297, DOI 10.2307/1971280
- Howard Masur and Serge Tabachnikov, Rational billiards and flat structures, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 1015–1089. MR 1928530, DOI 10.1016/S1874-575X(02)80015-7
- Curtis T. McMullen, Teichmüller curves in genus two: torsion divisors and ratios of sines, Invent. Math. 165 (2006), no. 3, 651–672. MR 2242630, DOI 10.1007/s00222-006-0511-2
- George William Tokarsky, Galperin’s triangle example, Comm. Math. Phys. 335 (2015), no. 3, 1211–1213. MR 3320310, DOI 10.1007/s00220-015-2336-6
- S. Troubetzkoy, Recurrence and periodic billiard orbits in polygons, Regul. Chaotic Dyn. 9 (2004), no. 1, 1–12. MR 2058893, DOI 10.1070/RD2004v009n01ABEH000259
- Serge Troubetzkoy, Periodic billiard orbits in right triangles, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 1, 29–46 (English, with English and French summaries). MR 2141287, DOI 10.5802/aif.2088
- W. A. Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math. 97 (1989), no. 3, 553–583. MR 1005006, DOI 10.1007/BF01388890
- J. Wang, G. Casati, and T. Prosen, Nonergodicity and localization of invariant measure for two colliding masses, Phys. Rev. E 89 (2014), 042918. DOI 10.1103/PhysRevE.89.042918.
- Katerina Zahradova, Julia Slipantschuk, Oscar F. Bandtlow, and Wolfram Just, Impact of symmetry on ergodic properties of triangular billiards, Phys. Rev. E 105 (2022), no. 1, Paper No. L012201, 6. MR 4382970, DOI 10.1103/physreve.105.l012201
- Katerina Zahradova, Julia Slipantschuk, Oscar F. Bandtlow, and Wolfram Just, Anomalous dynamics in symmetric triangular irrational billiards, Phys. D 445 (2023), Paper No. 133619, 9. MR 4526578, DOI 10.1016/j.physd.2022.133619
- A. N. Zemljakov and A. B. Katok, Topological transitivity of billiards in polygons, Mat. Zametki 18 (1975), no. 2, 291–300 (Russian). MR 399423
Bibliographic Information
- Julia Slipantschuk
- Affiliation: Department of Mathematics, University of Warwick, Coventry CV4 7AL, United Kingdom
- Address at time of publication: Department of Mathematics, University of Bayreuth, D-95440 Bayreuth, Germany
- MR Author ID: 1010829
- ORCID: 0009-0004-0563-9214
- Email: julia.slipantschuk@warwick.ac.uk, Julia.Slipantschuk@uni-bayreuth.de
- Oscar F. Bandtlow
- Affiliation: School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
- MR Author ID: 360975
- ORCID: 0000-0002-8288-4991
- Email: o.bandtlow@qmul.ac.uk
- Wolfram Just
- Affiliation: Institute of Mathematics, University of Rostock, D-18057 Rostock, Germany
- MR Author ID: 254872
- Email: wolfram.just@uni-rostock.de
- Received by editor(s): May 16, 2024
- Published electronically: October 25, 2024
- Additional Notes: All authors gratefully acknowledge the support for the research presented in this article by the EPSRC grant EP/RO12008/1. The first author was partly supported by the ERC-Advanced Grant 833802-Resonances and the third author was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) SFB 1270/2 - 299150580.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 375-388
- MSC (2020): Primary 37C83; Secondary 37C79, 37B20, 37E30
- DOI: https://doi.org/10.1090/tran/9239
- MathSciNet review: 4840308