$KU$-local zeta-functions of finite CW-complexes
HTML articles powered by AMS MathViewer
Abstract:
Begin with the Hasse-Weil zeta-function of a smooth projective variety over $\mathbb {Q}$. Replace the variety with a finite CW-complex, replace étale cohomology with complex $K$-theory $KU^*$, and replace the $p$-Frobenius operator with the $p$th Adams operation on $K$-theory. This simple idea yields a kind of “$KU$-local zeta-function” of a finite CW-complex. For a wide range of finite CW-complexes $X$ with torsion-free $K$-theory, we show that this zeta-function admits analytic continuation to a meromorphic function on the complex plane, with a nice functional equation, and whose special values in the left half-plane recover the $KU$-local stable homotopy groups of $X$ away from $2$.
We then consider a more general and sophisticated version of the $KU$-local zeta-function, one which is suited to finite CW-complexes $X$ with nontrivial torsion in their $K$-theory. This more sophisticated $KU$-local zeta-function involves a product of $L$-functions of complex representations of the torsion subgroup of $KU^0(X)$, similar to how the Dedekind zeta-function of a number field factors as a product of Artin $L$-functions of complex representations of the Galois group. For a wide range of such finite CW-complexes $X$, we prove analytic continuation of the zeta-function, and we show that the special values in the left half-plane recover the $KU$-local stable homotopy groups of $X$ away from $2$ if and only if the skeletal filtration on the torsion subgroup of $KU^0(X)$ splits completely.
References
- J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603–632. MR 139178, DOI 10.2307/1970213
- D. W. Anderson, Universal Coefficient Theorems for $K$-theory, unpublished mimeographed notes. Berkeley, 1969.
- Tom M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR 434929
- Tilman Bauer, Bousfield localization and the Hasse square, 2011.
- Mark Behrens, The homotopy groups of $S_{E(2)}$ at $p\geq 5$ revisited, Adv. Math. 230 (2012), no. 2, 458–492. MR 2914955, DOI 10.1016/j.aim.2012.02.023
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- A. K. Bousfield, The localization of spectra with respect to homology, Topology 18 (1979), no. 4, 257–281. MR 551009, DOI 10.1016/0040-9383(79)90018-1
- A. K. Bousfield, On the homotopy theory of $K$-local spectra at an odd prime, Amer. J. Math. 107 (1985), no. 4, 895–932. MR 796907, DOI 10.2307/2374361
- A. K. Bousfield, A classification of $K$-local spectra, J. Pure Appl. Algebra 66 (1990), no. 2, 121–163. MR 1075335, DOI 10.1016/0022-4049(90)90082-S
- L. Carlitz, Arithmetic properties of generalized Bernoulli numbers, J. Reine Angew. Math. 202 (1959), 174–182. MR 109132, DOI 10.1515/crll.1959.202.174
- L. Carlitz, Some arithmetic properties of generalized Bernoulli numbers, Bull. Amer. Math. Soc. 65 (1959), 68–69. MR 104630, DOI 10.1090/S0002-9904-1959-10278-0
- Ethan S. Devinatz and Michael J. Hopkins, Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology 43 (2004), no. 1, 1–47. MR 2030586, DOI 10.1016/S0040-9383(03)00029-6
- Christopher L. Douglas, John Francis, André G. Henriques, and Michael A. Hill (eds.), Topological modular forms, Mathematical Surveys and Monographs, vol. 201, American Mathematical Society, Providence, RI, 2014. MR 3223024, DOI 10.1090/surv/201
- William G. Dwyer and Eric M. Friedlander, Étale $K$-theory and arithmetic, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 453–455. MR 648533, DOI 10.1090/S0273-0979-1982-15013-3
- William G. Dwyer and Eric M. Friedlander, Algebraic and etale $K$-theory, Trans. Amer. Math. Soc. 292 (1985), no. 1, 247–280. MR 805962, DOI 10.1090/S0002-9947-1985-0805962-2
- A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs, vol. 47, American Mathematical Society, Providence, RI, 1997. With an appendix by M. Cole. MR 1417719, DOI 10.1090/surv/047
- Ralph Greenberg, A generalization of Kummer’s criterion, Invent. Math. 21 (1973), 247–254. MR 332730, DOI 10.1007/BF01390200
- Kenkichi Iwasawa, Lectures on $p$-adic $L$-functions, Annals of Mathematics Studies, No. 74, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1972. MR 360526, DOI 10.1515/9781400881703
- Kenkichi Iwasawa, On cohomology groups of units for $\textbf {Z}_{p}$-extensions, Amer. J. Math. 105 (1983), no. 1, 189–200. MR 692110, DOI 10.2307/2374385
- Masanari Kida, Kummer’s criterion for totally real number fields, Tokyo J. Math. 14 (1991), no. 2, 309–317. MR 1138169, DOI 10.3836/tjm/1270130374
- C. R. F. Maunder, The spectral sequence of an extraordinary cohomology theory, Proc. Cambridge Philos. Soc. 59 (1963), 567–574. MR 150765, DOI 10.1017/s0305004100037245
- Stephen A. Mitchell, $K(1)$-local homotopy theory, Iwasawa theory and algebraic $K$-theory, Handbook of $K$-theory. Vol. 1, 2, Springer, Berlin, 2005, pp. 955–1010. MR 2181837, DOI 10.1007/978-3-540-27855-9_{1}9
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008. MR 2392026, DOI 10.1007/978-3-540-37889-1
- Marius Overholt, A course in analytic number theory, Graduate Studies in Mathematics, vol. 160, American Mathematical Society, Providence, RI, 2014. MR 3290245, DOI 10.1090/gsm/160
- Daniel Quillen, On the cohomology and $K$-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552–586. MR 315016, DOI 10.2307/1970825
- Douglas C. Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984), no. 2, 351–414. MR 737778, DOI 10.2307/2374308
- Douglas C. Ravenel, Nilpotence and periodicity in stable homotopy theory, Annals of Mathematics Studies, vol. 128, Princeton University Press, Princeton, NJ, 1992. Appendix C by Jeff Smith. MR 1192553
- Kenneth A. Ribet, A modular construction of unramified $p$-extensions of $Q(\mu _{p})$, Invent. Math. 34 (1976), no. 3, 151–162. MR 419403, DOI 10.1007/BF01403065
- Andrew Salch, Denominators of special values of $\xi$-functions count $KU$-local homotopy groups of $\textrm {mod}\, p$ Moore spectra, Rocky Mountain J. Math. 53 (2023), no. 3, 915–935. MR 4617921, DOI 10.1216/rmj.2023.53.915
- Jean-Pierre Serre, Galois cohomology, Corrected reprint of the 1997 English edition, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. Translated from the French by Patrick Ion and revised by the author. MR 1867431
- Katsumi Shimomura and Atsuko Yabe, The homotopy groups $\pi _*(L_2S^0)$, Topology 34 (1995), no. 2, 261–289. MR 1318877, DOI 10.1016/0040-9383(94)00032-G
- Dennis Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. (2) 100 (1974), 1–79. MR 442930, DOI 10.2307/1970841
- The Sage Developers. SageMath, the Sage Mathematics Software System (Version 6.6), 2015. https://www.sagemath.org.
- R. W. Thomason, Algebraic $K$-theory and étale cohomology, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 3, 437–552. MR 826102, DOI 10.24033/asens.1495
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
- André Weil, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc. 55 (1949), 497–508. MR 29393, DOI 10.1090/S0002-9904-1949-09219-4
- Zen-ichi Yosimura, Universal coefficient sequences for cohomology theories of $\textrm {CW}$-spectra, Osaka Math. J. 12 (1975), no. 2, 305–323. MR 388375
- Ningchuan Zhang, Analogs of Dirichlet $L$-functions in chromatic homotopy theory, Adv. Math. 399 (2022), Paper No. 108267, 84. MR 4384614, DOI 10.1016/j.aim.2022.108267
Bibliographic Information
- A. Salch
- Affiliation: Department of Mathematics, 1207 F/AB, Wayne State University, 656 W. Kirby, Detroit, Michigan 48202
- MR Author ID: 1045652
- ORCID: 0000-0001-6838-7051
- Received by editor(s): August 22, 2023
- Received by editor(s) in revised form: June 22, 2024
- Published electronically: September 25, 2024
- © Copyright 2024 by the author
- Journal: Trans. Amer. Math. Soc. 378 (2025), 597-634
- MSC (2020): Primary 55Q10, 11M41; Secondary 14G10
- DOI: https://doi.org/10.1090/tran/9273
- MathSciNet review: 4840316