Sobolev inequalities and regularity of the linearized complex Monge-Ampère and Hessian equations
HTML articles powered by AMS MathViewer
- by Jiaxiang Wang and Bin Zhou;
- Trans. Amer. Math. Soc. 378 (2025), 447-475
- DOI: https://doi.org/10.1090/tran/9275
- Published electronically: October 23, 2024
- HTML | PDF | Request permission
Abstract:
Let $u$ be a smooth, strictly $k$-plurisubharmonic function on a bounded domain $\Omega \in \mathbb C^n$ with $2\leq k\leq n$. The purpose of this paper is to study the regularity of solution to the linearized complex Monge-Ampère and Hessian equations when the complex $k$-Hessian $H_k[u]$ of $u$ is bounded from above and below. We first establish an estimate of Green’s functions associated to the linearized equations. Then we prove a class of new Sobolev inequalities. With these inequalities, we use Moser’s iteration to investigate the a priori estimates of Hessian equations and their linearized equations, as well as the Kähler scalar curvature equation. In particular, we obtain the Harnack inequality for the linearized complex Monge-Ampère and Hessian equations under an extra integrability condition on the coefficients.References
- Robert J. Berman and Bo Berndtsson, Moser-Trudinger type inequalities for complex Monge-Ampère operators and Aubin’s “hypothèse fondamentale”, Ann. Fac. Sci. Toulouse Math. (6) 31 (2022), no. 3, 595–645. MR 4452252, DOI 10.5802/afst.170
- Zbigniew Błocki and Sławomir Dinew, A local regularity of the complex Monge-Ampère equation, Math. Ann. 351 (2011), no. 2, 411–416. MR 2836666, DOI 10.1007/s00208-010-0609-0
- Peter Bella and Mathias Schäffner, Local boundedness and Harnack inequality for solutions of linear nonuniformly elliptic equations, Comm. Pure Appl. Math. 74 (2021), no. 3, 453–477. MR 4201290, DOI 10.1002/cpa.21876
- Xiuxiong Chen and Jingrui Cheng, On the constant scalar curvature Kähler metrics (I)—A priori estimates, J. Amer. Math. Soc. 34 (2021), no. 4, 909–936. MR 4301557, DOI 10.1090/jams/967
- Jingrui Cheng and Yulun Xu, Interior $W^{2,p}$ estimate for small perturbations to the complex Monge-Ampère equation, Calc. Var. Partial Differential Equations 62 (2023), no. 8, Paper No. 231, 46. MR 4645029, DOI 10.1007/s00526-023-02571-x
- Luis A. Caffarelli and Cristian E. Gutiérrez, Properties of the solutions of the linearized Monge-Ampère equation, Amer. J. Math. 119 (1997), no. 2, 423–465. MR 1439555, DOI 10.1353/ajm.1997.0010
- L. Caffarelli, L. Nirenberg, and J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), no. 3-4, 261–301. MR 806416, DOI 10.1007/BF02392544
- S. K. Donaldson, Interior estimates for solutions of Abreu’s equation, Collect. Math. 56 (2005), no. 2, 103–142. MR 2154300
- S. K. Donaldson, Extremal metrics on toric surfaces: a continuity method, J. Differential Geom. 79 (2008), no. 3, 389–432. MR 2433928, DOI 10.4310/jdg/1213798183
- Simon K. Donaldson, Constant scalar curvature metrics on toric surfaces, Geom. Funct. Anal. 19 (2009), no. 1, 83–136. MR 2507220, DOI 10.1007/s00039-009-0714-y
- G. De Philippis, A. Figalli, and O. Savin, A note on interior $W^{2,1+\varepsilon }$ estimates for the Monge-Ampère equation, Math. Ann. 357 (2013), no. 1, 11–22. MR 3084340, DOI 10.1007/s00208-012-0895-9
- Sławomir Dinew and Sławomir Kołodziej, A priori estimates for complex Hessian equations, Anal. PDE 7 (2014), no. 1, 227–244. MR 3219505, DOI 10.2140/apde.2014.7.227
- Bruno Franchi, Raul Serapioni, and Francesco Serra Cassano, Irregular solutions of linear degenerate elliptic equations, Potential Anal. 9 (1998), no. 3, 201–216. MR 1666899, DOI 10.1023/A:1008684127989
- Bin Guo, Duong H. Phong, and Jacob Sturm, Green’s functions and complex Monge-Ampère equations, J. Differential Geom. 127 (2024), no. 3, 1083–1119. MR 4773174, DOI 10.4310/jdg/1721071497
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364, DOI 10.1007/978-3-642-61798-0
- Michael Grüter and Kjell-Ove Widman, The Green function for uniformly elliptic equations, Manuscripta Math. 37 (1982), no. 3, 303–342. MR 657523, DOI 10.1007/BF01166225
- Qing Han and Fanghua Lin, Elliptic partial differential equations, 2nd ed., Courant Lecture Notes in Mathematics, vol. 1, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2011. MR 2777537
- Sławomir Kołodziej, The complex Monge-Ampère equation, Acta Math. 180 (1998), no. 1, 69–117. MR 1618325, DOI 10.1007/BF02392879
- Nam Q. Le, Remarks on the Green’s function of the linearized Monge-Ampère operator, Manuscripta Math. 149 (2016), no. 1-2, 45–62. MR 3447139, DOI 10.1007/s00229-015-0766-2
- Nam Q. Le, Hölder regularity of the 2D dual semigeostrophic equations via analysis of linearized Monge-Ampère equations, Comm. Math. Phys. 360 (2018), no. 1, 271–305. MR 3795192, DOI 10.1007/s00220-018-3125-9
- W. Littman, G. Stampacchia, and H. F. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 17 (1963), 43–77. MR 161019
- Diego Maldonado, On the $W^{2,1+\varepsilon }$-estimates for the Monge-Ampère equation and related real analysis, Calc. Var. Partial Differential Equations 50 (2014), no. 1-2, 93–114. MR 3194677, DOI 10.1007/s00526-013-0629-1
- Diego Maldonado, The Monge-Ampère quasi-metric structure admits a Sobolev inequality, Math. Res. Lett. 20 (2013), no. 3, 527–536. MR 3162845, DOI 10.4310/MRL.2013.v20.n3.a10
- M. K. V. Murthy and G. Stampacchia, Boundary value problems for some degenerate-elliptic operators, Ann. Mat. Pura Appl. (4) 80 (1968), 1–122 (English, with Italian summary). MR 249828, DOI 10.1007/BF02413623
- John I. E. Urbas, On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations, Indiana Univ. Math. J. 39 (1990), no. 2, 355–382. MR 1089043, DOI 10.1512/iumj.1990.39.39020
- John Urbas, An interior second derivative bound for solutions of Hessian equations, Calc. Var. Partial Differential Equations 12 (2001), no. 4, 417–431. MR 1840289, DOI 10.1007/PL00009920
- Thomas Schmidt, $\textrm {W}^{2,1+\varepsilon }$ estimates for the Monge-Ampère equation, Adv. Math. 240 (2013), 672–689. MR 3046322, DOI 10.1016/j.aim.2012.07.034
- Neil S. Trudinger, On the regularity of generalized solutions of linear, non-uniformly elliptic equations, Arch. Rational Mech. Anal. 42 (1971), 50–62. MR 344656, DOI 10.1007/BF00282317
- Neil S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 27 (1973), 265–308. MR 369884
- Gu-Ji Tian and Xu-Jia Wang, A class of Sobolev type inequalities, Methods Appl. Anal. 15 (2008), no. 2, 263–276. MR 2481683, DOI 10.4310/MAA.2008.v15.n2.a10
- Neil S. Trudinger and Xu-Jia Wang, The Bernstein problem for affine maximal hypersurfaces, Invent. Math. 140 (2000), no. 2, 399–422. MR 1757001, DOI 10.1007/s002220000059
- Neil S. Trudinger and Xu-Jia Wang, The affine Plateau problem, J. Amer. Math. Soc. 18 (2005), no. 2, 253–289. MR 2137978, DOI 10.1090/S0894-0347-05-00475-3
- X.-J. Wang, The $k$-Hessian equation, Lecture Notes in Mathematics, vol. 1977, Springer, Berlin, 2009.
- Jiaxiang Wang, Xu-jia Wang, and Bin Zhou, Moser-Trudinger inequality for the complex Monge-Ampère equation, J. Funct. Anal. 279 (2020), no. 12, 108765, 20. MR 4155289, DOI 10.1016/j.jfa.2020.108765
- Jiaxiang Wang, Xu-Jia Wang, and Bin Zhou, A priori estimate for the complex Monge-Ampère equation, Peking Math. J. 4 (2021), no. 1, 143–157. MR 4249053, DOI 10.1007/s42543-020-00025-3
- Yulun Xu, Interior Hölder estimate for the linearized complex Monge-Ampère equation, Calc. Var. Partial Differential Equations. 63, 202 (2024). DOI 10.1007/s00526-024-02814-5
Bibliographic Information
- Jiaxiang Wang
- Affiliation: School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, People’s Republic of China
- MR Author ID: 1335031
- ORCID: 0000-0003-1261-3085
- Email: wangjx_manifold@126.com
- Bin Zhou
- Affiliation: School of Mathematical Sciences, Peking University, Beijing 100871, China
- ORCID: 0000-0001-7595-4798
- Email: bzhou@pku.edu.cn
- Received by editor(s): September 16, 2023
- Received by editor(s) in revised form: January 1, 2024, May 9, 2024, May 9, 2024, and May 28, 2024
- Published electronically: October 23, 2024
- Additional Notes: The second author was partially supported by National Key R&D Program of China SQ2020YFA0712800 and NSFC Grant 11822101.
- © Copyright 2024 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 378 (2025), 447-475
- MSC (2020): Primary 32W20; Secondary 35J60
- DOI: https://doi.org/10.1090/tran/9275
- MathSciNet review: 4840311